Diogo Almeida - Academia.edu (original) (raw)
Uploads
Papers by Diogo Almeida
Language, Cognition and Neuroscience, 2015
The role of Broca's area in sentence processing is hotly debated. Prominent hypotheses include th... more The role of Broca's area in sentence processing is hotly debated. Prominent hypotheses include that Broca's area supports sentence comprehension via syntax-specific processes ("syntactic movement" in particular), hierarchical structure building or working memory. In the present fMRI study we adopt a within subject, across task approach using targeted sentence-level contrasts and non-sentential comparison tasks to address these hypotheses regarding the role of Broca's area in sentence processing. For clarity, we have presented findings as three experiments: (i) Experiment 1 examines selectivity for a particular type of sentence construction, namely those containing syntactic movement. Standard syntactic movement distance effects in Broca's area were replicated but no difference was found between movement and non-movement sentences in Broca's area at the group level or consistently in individual subjects. (ii) Experiment 2 examines selectivity for sentences versus non-sentences, to assess claims regarding the role of Broca's area in hierarchical structure building. Group and individual results differ, but both identify subregions of Broca's area that are selective for sentence structure. (iii) Experiment 3 assesses whether activations in Broca's area are selective for sentences when contrasted with simple subvocal articulation. Group results suggest shared resources for sentence processing and articulation in Broca's area, but individual subject analyses contradict this finding. We conclude that Broca's area is not selectively involved in processing syntactic movement, but that subregions are selectively responsive to sentence structure. Our findings also reinforce Fedorenko & Kanwishser's call for the use of more individual subject analyses in functional imaging studies of sentence processing in Broca's area, as group findings can obscure selective response patterns.
Language, Cognition and Neuroscience, 2015
The role of Broca's area in sentence processing is hotly debated. Prominent hypotheses include th... more The role of Broca's area in sentence processing is hotly debated. Prominent hypotheses include that Broca's area supports sentence comprehension via syntax-specific processes ("syntactic movement" in particular), hierarchical structure building or working memory. In the present fMRI study we adopt a within subject, across task approach using targeted sentence-level contrasts and non-sentential comparison tasks to address these hypotheses regarding the role of Broca's area in sentence processing. For clarity, we have presented findings as three experiments: (i) Experiment 1 examines selectivity for a particular type of sentence construction, namely those containing syntactic movement. Standard syntactic movement distance effects in Broca's area were replicated but no difference was found between movement and non-movement sentences in Broca's area at the group level or consistently in individual subjects. (ii) Experiment 2 examines selectivity for sentences versus non-sentences, to assess claims regarding the role of Broca's area in hierarchical structure building. Group and individual results differ, but both identify subregions of Broca's area that are selective for sentence structure. (iii) Experiment 3 assesses whether activations in Broca's area are selective for sentences when contrasted with simple subvocal articulation. Group results suggest shared resources for sentence processing and articulation in Broca's area, but individual subject analyses contradict this finding. We conclude that Broca's area is not selectively involved in processing syntactic movement, but that subregions are selectively responsive to sentence structure. Our findings also reinforce Fedorenko & Kanwishser's call for the use of more individual subject analyses in functional imaging studies of sentence processing in Broca's area, as group findings can obscure selective response patterns.