Dorte Kristensen - Academia.edu (original) (raw)

Papers by Dorte Kristensen

Research paper thumbnail of Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery

American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2015

Roux-en-Y gastric bypass (RYGB) leads to increased peripheral insulin sensitivity. The aim of thi... more Roux-en-Y gastric bypass (RYGB) leads to increased peripheral insulin sensitivity. The aim of this study was to investigate the effect of RYGB on expression and regulation of proteins involved in regulation of peripheral glucose metabolism. Skeletal muscle and adipose tissue biopsies from glucose tolerant and type 2 diabetic subjects at fasting and during a hyperinsulinemic-euglycemic clamp before as well as 1 week, 3 and 12 months after RYGB were analyzed for relevant insulin effector proteins/signaling components. Improvement in peripheral insulin sensitivity mainly occurred at 12 months post-surgery when major weight loss was evident and occurred concomitantly with alterations in plasma adiponectin and in protein expression/signaling in peripheral tissues. In skeletal muscle, protein expression of GLUT4, phosphorylated levels of TBC1D4 as well as insulin-induced changes in phosphorylation of Akt and glycogen synthase activity were enhanced 12 months post-surgery. In adipose tissue, protein expression of GLUT4, Akt2, TBC1D4 and acetyl-CoA carboxylase (ACC), phosphorylated levels of AMP-activated protein kinase and ACC as well as insulin-induced changes in phosphorylation of Akt and TBC1D4 were enhanced 12 months post-surgery. Adipose tissue from glucose tolerant subjects was the most responsive to RYGB compared to type 2 diabetic patients, whereas changes in skeletal muscle were largely similar in these two groups. In conclusion, an improved molecular insulin sensitive phenotype of skeletal muscle and adipose tissue appears to contribute to the improved whole body insulin action following a substantial weight loss after RYGB.

Research paper thumbnail of Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

The Journal of Physiology, 2015

Keypoints r AMP-activated protein kinase (AMPK) is an important regulator of cellular energy stat... more Keypoints r AMP-activated protein kinase (AMPK) is an important regulator of cellular energy status during exercise.

Research paper thumbnail of Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes

Diabetes, 2015

Skeletal muscle is a heterogeneous tissue composed of different fiber types. Studies suggest that... more Skeletal muscle is a heterogeneous tissue composed of different fiber types. Studies suggest that insulin-mediated glucose metabolism is different between muscle fiber types. We hypothesized that differences are due to fiber type-specific expression/regulation of insulin signaling elements and/or metabolic enzymes. Pools of type I and II fibers were prepared from biopsies of the vastus lateralis muscles from lean, obese, and type 2 diabetic subjects before and after a hyperinsulinemic-euglycemic clamp. Type I fibers compared with type II fibers have higher protein levels of the insulin receptor, GLUT4, hexokinase II, glycogen synthase (GS), and pyruvate dehydrogenase-E1α (PDH-E1α) and a lower protein content of Akt2, TBC1 domain family member 4 (TBC1D4), and TBC1D1. In type I fibers compared with type II fibers, the phosphorylation response to insulin was similar (TBC1D4, TBC1D1, and GS) or decreased (Akt and PDH-E1α). Phosphorylation responses to insulin adjusted for protein level ...

Research paper thumbnail of Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery

American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2015

Roux-en-Y gastric bypass (RYGB) leads to increased peripheral insulin sensitivity. The aim of thi... more Roux-en-Y gastric bypass (RYGB) leads to increased peripheral insulin sensitivity. The aim of this study was to investigate the effect of RYGB on expression and regulation of proteins involved in regulation of peripheral glucose metabolism. Skeletal muscle and adipose tissue biopsies from glucose tolerant and type 2 diabetic subjects at fasting and during a hyperinsulinemic-euglycemic clamp before as well as 1 week, 3 and 12 months after RYGB were analyzed for relevant insulin effector proteins/signaling components. Improvement in peripheral insulin sensitivity mainly occurred at 12 months post-surgery when major weight loss was evident and occurred concomitantly with alterations in plasma adiponectin and in protein expression/signaling in peripheral tissues. In skeletal muscle, protein expression of GLUT4, phosphorylated levels of TBC1D4 as well as insulin-induced changes in phosphorylation of Akt and glycogen synthase activity were enhanced 12 months post-surgery. In adipose tissue, protein expression of GLUT4, Akt2, TBC1D4 and acetyl-CoA carboxylase (ACC), phosphorylated levels of AMP-activated protein kinase and ACC as well as insulin-induced changes in phosphorylation of Akt and TBC1D4 were enhanced 12 months post-surgery. Adipose tissue from glucose tolerant subjects was the most responsive to RYGB compared to type 2 diabetic patients, whereas changes in skeletal muscle were largely similar in these two groups. In conclusion, an improved molecular insulin sensitive phenotype of skeletal muscle and adipose tissue appears to contribute to the improved whole body insulin action following a substantial weight loss after RYGB.

Research paper thumbnail of Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

The Journal of Physiology, 2015

Keypoints r AMP-activated protein kinase (AMPK) is an important regulator of cellular energy stat... more Keypoints r AMP-activated protein kinase (AMPK) is an important regulator of cellular energy status during exercise.

Research paper thumbnail of Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes

Diabetes, 2015

Skeletal muscle is a heterogeneous tissue composed of different fiber types. Studies suggest that... more Skeletal muscle is a heterogeneous tissue composed of different fiber types. Studies suggest that insulin-mediated glucose metabolism is different between muscle fiber types. We hypothesized that differences are due to fiber type-specific expression/regulation of insulin signaling elements and/or metabolic enzymes. Pools of type I and II fibers were prepared from biopsies of the vastus lateralis muscles from lean, obese, and type 2 diabetic subjects before and after a hyperinsulinemic-euglycemic clamp. Type I fibers compared with type II fibers have higher protein levels of the insulin receptor, GLUT4, hexokinase II, glycogen synthase (GS), and pyruvate dehydrogenase-E1α (PDH-E1α) and a lower protein content of Akt2, TBC1 domain family member 4 (TBC1D4), and TBC1D1. In type I fibers compared with type II fibers, the phosphorylation response to insulin was similar (TBC1D4, TBC1D1, and GS) or decreased (Akt and PDH-E1α). Phosphorylation responses to insulin adjusted for protein level ...