Doruntina Murtezaj - Academia.edu (original) (raw)
Uploads
All papers by Doruntina Murtezaj
Article, 2021
During the pandemic, when people needed to physically distance, social media platforms have been ... more During the pandemic, when people needed to physically distance, social media platforms have been one of the outlets where people expressed their opinions, thoughts, sentiments, and emotions regarding the pandemic situation. The core object of this research study is the sentiment analysis of peoples’ opinions expressed on Facebook regarding the current pandemic situation in low- resource languages. To do this, we have created a large-scale dataset comprising of 10,742 manually classified comments in the Albanian language. Furthermore, in this paper we report our efforts on the design and development of a sentiment analyser that relies on deep learning. As a result, we report the experimental findings obtained from our proposed sentiment analyser using various classifier models with static and contextualized word embeddings, that is, fastText and BERT, trained and validated on our collected and curated dataset. Specifically, the findings reveal that combining the BiLSTM with an attention mechanism achieved the highest performance on our sentiment analysis task, with an F1 score of 72.09%.
Article, 2021
During the pandemic, when people needed to physically distance, social media platforms have been ... more During the pandemic, when people needed to physically distance, social media platforms have been one of the outlets where people expressed their opinions, thoughts, sentiments, and emotions regarding the pandemic situation. The core object of this research study is the sentiment analysis of peoples’ opinions expressed on Facebook regarding the current pandemic situation in low- resource languages. To do this, we have created a large-scale dataset comprising of 10,742 manually classified comments in the Albanian language. Furthermore, in this paper we report our efforts on the design and development of a sentiment analyser that relies on deep learning. As a result, we report the experimental findings obtained from our proposed sentiment analyser using various classifier models with static and contextualized word embeddings, that is, fastText and BERT, trained and validated on our collected and curated dataset. Specifically, the findings reveal that combining the BiLSTM with an attention mechanism achieved the highest performance on our sentiment analysis task, with an F1 score of 72.09%.