Dr. Mohamed Mahfouz - Academia.edu (original) (raw)
Uploads
Papers by Dr. Mohamed Mahfouz
The Journal of Arthroplasty, 2005
An in vivo comparison of flexion kinematics for posterior cruciateretaining (PCR) and posterior s... more An in vivo comparison of flexion kinematics for posterior cruciateretaining (PCR) and posterior stabilized (PS) total knee arthroplasty (TKA) was performed. Twenty patients who underwent bilateral paired TKAs were included in this prospective study. Both PCR and PS prostheses were from the same TKA series with comparable surface geometries, and all were implanted by a single surgeon. Of these 20 patients, 3-dimensional kinematics during flexion could be analyzed using a computer model fitting technique in 18 patients. The follow-up period ranged from 18 to 53 months. In the PCR TKA, an anterior femoral translation from 308 to 608 of flexion was observed in the weight-bearing condition. In contrast, flexion kinematics for the PS TKA was characterized by the maintenance of a constant contact position under weight-bearing conditions and posterior femoral rollback in passive flexion.
The Journal of Arthroplasty, 2005
An in vivo comparison of flexion kinematics for posterior cruciateretaining (PCR) and posterior s... more An in vivo comparison of flexion kinematics for posterior cruciateretaining (PCR) and posterior stabilized (PS) total knee arthroplasty (TKA) was performed. Twenty patients who underwent bilateral paired TKAs were included in this prospective study. Both PCR and PS prostheses were from the same TKA series with comparable surface geometries, and all were implanted by a single surgeon. Of these 20 patients, 3-dimensional kinematics during flexion could be analyzed using a computer model fitting technique in 18 patients. The follow-up period ranged from 18 to 53 months. In the PCR TKA, an anterior femoral translation from 308 to 608 of flexion was observed in the weight-bearing condition. In contrast, flexion kinematics for the PS TKA was characterized by the maintenance of a constant contact position under weight-bearing conditions and posterior femoral rollback in passive flexion.