Steve Dunham - Academia.edu (original) (raw)
Papers by Steve Dunham
Veterinary Immunology and Immunopathology, 2014
To date, very little is known about the functional characteristics of the four published canine I... more To date, very little is known about the functional characteristics of the four published canine IgG subclasses. It is not clear how each subclass engages the immune system via complement-dependent cytotoxicity (CDC) or antibody-dependent cell-mediated cytotoxicity (ADCC), or how long each antibody may last in serum. Such information is critical for understanding canine immunology and for the discovery of canine therapeutic monoclonal antibodies. Through both in vitro and ex vivo experiments to evaluate canine Fc's for effector function, complement binding, FcRn binding, and ADCC, we are now able to categorize canine subclasses by function. The subclasses share functional properties with the four human IgG subclasses and are reported herein with their function-based human analog. Canine Fc fusions, canine chimeras, and caninized antibodies were characterized. Canine subclasses A and D appear effector-function negative while subclasses B and C bind canine Fc gamma receptors and are positive for ADCC. All canine subclasses bind the neonatal Fc receptor except subclass C. By understanding canine IgGs in this way, we can apply what is known of human immunology toward translational and veterinary medicine. Thus, this body of work lays the foundation for evaluating canine IgG subclasses for therapeutic antibody development and builds upon the fundamental scholarship of canine immunology.
Molecular Microbiology, 1999
Understanding the structural biology of type IV pili, fibres responsible for the virulent attachm... more Understanding the structural biology of type IV pili, fibres responsible for the virulent attachment and motility of numerous bacterial pathogens, requires a detailed understanding of the three-dimensional structure and chemistry of the constituent pilin subunit. X-ray crystallographic refinement of Neisseria gonorrhoeae pilin against diffraction data to 2.6 A resolution, coupled with mass spectrometry of peptide fragments, reveals phosphoserine at residue 68. Phosphoserine is exposed on the surface of the modelled type IV pilus at the interface of neighbouring pilin molecules. The site-specific mutation of serine 68 to alanine showed that the loss of the phosphorylation alters the morphology of fibres examined by electron microscopy without a notable effect on adhesion, transformation, piliation or twitching motility. The structural and chemical characterization of protein phosphoserine in type IV pilin subunits is an important indication that this modification, key to numerous regulatory aspects of eukaryotic cell biology, exists in the virulence factor proteins of bacterial pathogens. These O-linked phosphate modifications, unusual in prokaryotes, thus merit study for possible roles in pilus biogenesis and modulation of pilin chemistry for optimal in vivo function.
Molecular Microbiology, 1998
Secretins are a large family of proteins associated with membrane translocation of macromolecular... more Secretins are a large family of proteins associated with membrane translocation of macromolecular complexes, and a subset of this family, termed PilQ proteins, is required for type IV pilus biogenesis. We analysed the status of PilQ expression in Neisseria meningitidis (Mc) and found that PilQ ¹ mutants were non-piliated and deficient in the expression of pilusassociated phenotypes. Sequence analysis of the 5Ј portion of the pilQ ORF of the serogroup B Mc strain 44/76 showed the presence of seven copies of a repetitive sequence element, in contrast to the situation in N. gonorrhoeae (Gc) strains, which carry either two or three copies of the repeat. The derived amino acid sequence of the consensus nucleotide repeat was an octapeptide PAKQQAAA, designated as the small basic repeat (SBR). This gene segment was studied in more detail in a collection of 52 Mc strains of diverse origin by screening for variability in the size of the PCR-generated DNA fragments spanning the SBRs. These strains were found to harbour from four to seven copies of the repetitive element. No association between the number of copies and the serogroup, geographic origin or multilocus genotype of the strains was evident. The presence of polymorphic repeat elements in Mc PilQ is unprecedented within the secretin family. To address the potential function of the repeat containing domain, Mc strains were constructed so as to express chimeric PilQ molecules in which the number of SBR repeats was increased or in which the repeat containing domain was replaced in toto by the corresponding region of the Pseudomonas aeruginosa (Pa) PilQ protein. Although the strain expressing PilQ with an increased number of SBRs was identical to the parent strain in pilus phenotypes, a strain expressing PilQ with the equivalent Pa domain had an eightfold reduction in pilus expression level. The findings suggest that the repeat containing domain of PilQ influences Mc pilus expression quantitatively but not qualitatively.
Molecular Microbiology, 2002
The mechanisms by which DNA is taken up into the bacterial cell during natural genetic transforma... more The mechanisms by which DNA is taken up into the bacterial cell during natural genetic transformation are poorly understood. Although related components essential to the uptake of DNA during transformation have been defined in Gram-negative species, it remains unclear whether DNA binding and uptake are dissociable events. Therefore, DNA uptake has been the earliest definable step in any Gram-negative transformation pathway. In the human pathogen Neisseria gonorrhoeae , sequence-specific DNA uptake requires an intact type IV pili (Tfp) biogenesis machinery along with three molecules that are dispensable for Tfp expression: ComP (a pilin subunit-like molecule), PilT (a cytoplasmic protein involved in pilus retraction) and ComE (a periplasmic protein with intrinsic DNAbinding activity). By conditionally altering the levels of ComP and PilT expression, we show here that DNA binding and uptake are resolvable events. Consequently, we are able to demonstrate that PilT is largely dispensable for functional DNA binding and, therefore, contributes specifically to uptake. Furthermore, sequence specificity in this system is imposed at the level of DNA binding, a process that is influenced by both ComP and PilE. However, sequence-specific DNA binding is not attributable to an intrinsic property of the Tfp subunit protein. Finally, we demonstrate the existence of a robust, non-specific DNA-binding activity associated with the expression of both Tfp and PilT, which is unrelated to transformation but obscures the observation of specific binding events.
Molecular Microbiology, 2005
Type IV pili (Tfp) play central roles in prokaryotic cell biology and disease pathogenesis. As dy... more Type IV pili (Tfp) play central roles in prokaryotic cell biology and disease pathogenesis. As dynamic filamentous polymers, they undergo rounds of extension and retraction modelled as pilin subunit polymerization and depolymerization events. Currently, the molecular mechanisms and components influencing Tfp dynamics remain poorly understood. Using Neisseria gonorrhoeae as a model system, we show that mutants lacking any one of a set of five proteins sharing structural similarity to the pilus subunit are dramatically reduced in Tfp expression and that these defects are suppressed in the absence of the PilT pilus retraction protein. Thus, these molecules are not canonical assembly factors but rather act as effectors of pilus homeostasis by promoting extension/polymerization events in the presence of PilT. Furthermore, localization studies support the conclusion that these molecules form a Tfp-associated complex and influence levels of PilC, the epithelial cell adhesin, in Tfp-enriched shear fractions. This is the first time that the step at which individual pilin-like proteins impact on Tfp expression has been defined. The findings have important implications for understanding Tfp dynamics and fundamental Tfp structure/function relationships.
Journal of Medicinal Chemistry, 2006
The 3-aminoquinzolinediones represent a new series of antibacterial agents structurally related t... more The 3-aminoquinzolinediones represent a new series of antibacterial agents structurally related to the fluoroquinolones. They are inhibitors of bacterial gyrase and topoisomerase IV and demonstrate clinically useful antibacterial activity against fastidious Gram-negative and Gram-positive organisms, including multidrug- and fluoroquinolone-resistant organisms. These agents also demonstrate in vivo efficacy in murine systemic infection models.
Journal of Bacteriology, 2003
European Journal of Clinical Microbiology & Infectious Diseases, 2010
The clinical utility of fluoroquinolones (FQs) for the treatment of Pseudomonas aeruginosa (PA) a... more The clinical utility of fluoroquinolones (FQs) for the treatment of Pseudomonas aeruginosa (PA) and other serious Gram-negative infections is currently decreasing due to the rapid emergence of resistance. Because previous studies have shown that efflux is a common mechanism contributing to FQ resistance in PA, one suggested approach to extend the longevity of this class of drugs is combination therapy with an efflux pump inhibitor (EPI). In order to determine the viability of this approach, it is necessary to understand the relative contribution of efflux- vs. target-mediated mechanisms of FQ resistance in the clinic. A set of 26 recent PA clinical isolates were characterized for antibiotic resistance profiles, efflux pump expression, topoisomerase mutations, and FQ susceptibility with and without an EPI. The contribution of OprM to the overall antibiotic resistance was assessed in a subset of these strains. Our results suggest that the co-administration of an EPI with FQs or other antibiotics currently in use would not be sufficient to combat the complexity of resistance mechanisms now present in many clinical isolates.
Biochemistry, 2004
The antibacterial target enoyl-acyl carrier protein (ACP) reductase is a homotetrameric enzyme th... more The antibacterial target enoyl-acyl carrier protein (ACP) reductase is a homotetrameric enzyme that catalyzes the last reductive step of fatty acid biosynthesis. In the present paper, four 2-(2-hydroxyphenoxy)phenol inhibitors, wherein the 4-position substituent varied from H to n-propyl, were studied to determine the contribution of the aliphatic chain to the binding to the wild-type (wt) enoyl-ACP reductase from Escherichia coli (FabI) and a drug-resistant mutant, (F203L)FabI, in which phenylalanine 203 is mutated to leucine. Thermodynamic parameters of ternary complex formation (enzyme-NAD(+)-inhibitor) were determined by isothermal titration calorimetry. The inhibitor affinity to wt FabI and (F203L)FabI increases with increasing aliphatic chain length, although the corresponding affinity for (F203L)FabI is lower, and also, it shows no detectable binding to the 4-H inhibitor. A distinguishing feature of inhibitor binding to either binary enzyme-NAD(+) complex is the apparent negative cooperativity for binding to the tetramer with half-site occupancy. For both enzymes, binding is enthalpy, DeltaH, driven. However, binding DeltaH becomes less favorable with increasing aliphatic chain length. Increases in affinity are found to be exclusively due to favorable changes in solvation entropy. Incremental changes in thermodynamic parameters within the series of inhibitors binding to wt FabI and (F203L)FabI are approximately the same. However, absolute differences between the two enzymes for binding to a given inhibitor are significant, suggesting different binding modes. This finding, coupled with a binding site conformation that is likely to be more rigid in the mutant, appears to result in the drug resistance of (F203L)FabI.
Analytical and Bioanalytical Chemistry, 2011
ABSTRACT Bacterial resistance to antibiotic therapy remains a worldwide problem. In Pseudomonasae... more ABSTRACT Bacterial resistance to antibiotic therapy remains a worldwide problem. In Pseudomonasaeruginosa, rates of efflux confer inherent resistance to many antimicrobial agents, including fluoroquinolones, due to a high level of expression and a relatively high turnover number of the efflux pumps in gram-negative bacteria. To understand the roles of efflux pumps in both the influx and efflux of compounds in P. aeruginosa and to aid the chemistry compound design by bridging in vitro enzymatic binding data (IC(50) values) with whole cell results (MIC numbers), a collaborative effort was put forward to validate a series of bacterial penetration/accumulation assays for assessment of intracellular drug concentration. Initially, using 2-(4-dimethylaminostyryl)-1-ethylpyridinium cation (DMP) as the tracer, a 96-well fluorescence assay was established to measure the time-dependent accumulation of DMP in wild-type (PAO1), MexABOprM deletion (PAO200), and MexABOprM-MexCDOprJ-MexJKL:FRT deletion mutants (PAO314). At steady state, the order of DMP accumulation was PAO314>PAO200>PAO1. Subsequently, the established assay conditions were applied to a radiolabeled assay format using (3)H-labeled ciprofloxacin. At the concentration tested, the accumulation of [(3)H]ciprofloxacin approached a plateau after 15 min and the amount of accumulation in PAO314 was higher (~2- to 10-fold) than that in PAO1. Finally, with an additional step of cell lysis, a liquid chromatography/mass spectrometry-based assay was established with ciprofloxacin with (i) superior sensitivity (the detection limit can be as low as 0.24 ng/ml for ciprofloxacin) and (ii) the ability to monitor cold or nonfluorescent compounds in a drug discovery setting.
Proceedings of the National Academy of Sciences of the United States of America, Jan 10, 2009
As the need for novel antibiotic classes to combat bacterial drug resistance increases, the pauci... more As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious gram-negative pathogens including Haemophilus influenzae...
Veterinary Immunology and Immunopathology, 2014
To date, very little is known about the functional characteristics of the four published canine I... more To date, very little is known about the functional characteristics of the four published canine IgG subclasses. It is not clear how each subclass engages the immune system via complement-dependent cytotoxicity (CDC) or antibody-dependent cell-mediated cytotoxicity (ADCC), or how long each antibody may last in serum. Such information is critical for understanding canine immunology and for the discovery of canine therapeutic monoclonal antibodies. Through both in vitro and ex vivo experiments to evaluate canine Fc's for effector function, complement binding, FcRn binding, and ADCC, we are now able to categorize canine subclasses by function. The subclasses share functional properties with the four human IgG subclasses and are reported herein with their function-based human analog. Canine Fc fusions, canine chimeras, and caninized antibodies were characterized. Canine subclasses A and D appear effector-function negative while subclasses B and C bind canine Fc gamma receptors and are positive for ADCC. All canine subclasses bind the neonatal Fc receptor except subclass C. By understanding canine IgGs in this way, we can apply what is known of human immunology toward translational and veterinary medicine. Thus, this body of work lays the foundation for evaluating canine IgG subclasses for therapeutic antibody development and builds upon the fundamental scholarship of canine immunology.
Molecular Microbiology, 1999
Understanding the structural biology of type IV pili, fibres responsible for the virulent attachm... more Understanding the structural biology of type IV pili, fibres responsible for the virulent attachment and motility of numerous bacterial pathogens, requires a detailed understanding of the three-dimensional structure and chemistry of the constituent pilin subunit. X-ray crystallographic refinement of Neisseria gonorrhoeae pilin against diffraction data to 2.6 A resolution, coupled with mass spectrometry of peptide fragments, reveals phosphoserine at residue 68. Phosphoserine is exposed on the surface of the modelled type IV pilus at the interface of neighbouring pilin molecules. The site-specific mutation of serine 68 to alanine showed that the loss of the phosphorylation alters the morphology of fibres examined by electron microscopy without a notable effect on adhesion, transformation, piliation or twitching motility. The structural and chemical characterization of protein phosphoserine in type IV pilin subunits is an important indication that this modification, key to numerous regulatory aspects of eukaryotic cell biology, exists in the virulence factor proteins of bacterial pathogens. These O-linked phosphate modifications, unusual in prokaryotes, thus merit study for possible roles in pilus biogenesis and modulation of pilin chemistry for optimal in vivo function.
Molecular Microbiology, 1998
Secretins are a large family of proteins associated with membrane translocation of macromolecular... more Secretins are a large family of proteins associated with membrane translocation of macromolecular complexes, and a subset of this family, termed PilQ proteins, is required for type IV pilus biogenesis. We analysed the status of PilQ expression in Neisseria meningitidis (Mc) and found that PilQ ¹ mutants were non-piliated and deficient in the expression of pilusassociated phenotypes. Sequence analysis of the 5Ј portion of the pilQ ORF of the serogroup B Mc strain 44/76 showed the presence of seven copies of a repetitive sequence element, in contrast to the situation in N. gonorrhoeae (Gc) strains, which carry either two or three copies of the repeat. The derived amino acid sequence of the consensus nucleotide repeat was an octapeptide PAKQQAAA, designated as the small basic repeat (SBR). This gene segment was studied in more detail in a collection of 52 Mc strains of diverse origin by screening for variability in the size of the PCR-generated DNA fragments spanning the SBRs. These strains were found to harbour from four to seven copies of the repetitive element. No association between the number of copies and the serogroup, geographic origin or multilocus genotype of the strains was evident. The presence of polymorphic repeat elements in Mc PilQ is unprecedented within the secretin family. To address the potential function of the repeat containing domain, Mc strains were constructed so as to express chimeric PilQ molecules in which the number of SBR repeats was increased or in which the repeat containing domain was replaced in toto by the corresponding region of the Pseudomonas aeruginosa (Pa) PilQ protein. Although the strain expressing PilQ with an increased number of SBRs was identical to the parent strain in pilus phenotypes, a strain expressing PilQ with the equivalent Pa domain had an eightfold reduction in pilus expression level. The findings suggest that the repeat containing domain of PilQ influences Mc pilus expression quantitatively but not qualitatively.
Molecular Microbiology, 2002
The mechanisms by which DNA is taken up into the bacterial cell during natural genetic transforma... more The mechanisms by which DNA is taken up into the bacterial cell during natural genetic transformation are poorly understood. Although related components essential to the uptake of DNA during transformation have been defined in Gram-negative species, it remains unclear whether DNA binding and uptake are dissociable events. Therefore, DNA uptake has been the earliest definable step in any Gram-negative transformation pathway. In the human pathogen Neisseria gonorrhoeae , sequence-specific DNA uptake requires an intact type IV pili (Tfp) biogenesis machinery along with three molecules that are dispensable for Tfp expression: ComP (a pilin subunit-like molecule), PilT (a cytoplasmic protein involved in pilus retraction) and ComE (a periplasmic protein with intrinsic DNAbinding activity). By conditionally altering the levels of ComP and PilT expression, we show here that DNA binding and uptake are resolvable events. Consequently, we are able to demonstrate that PilT is largely dispensable for functional DNA binding and, therefore, contributes specifically to uptake. Furthermore, sequence specificity in this system is imposed at the level of DNA binding, a process that is influenced by both ComP and PilE. However, sequence-specific DNA binding is not attributable to an intrinsic property of the Tfp subunit protein. Finally, we demonstrate the existence of a robust, non-specific DNA-binding activity associated with the expression of both Tfp and PilT, which is unrelated to transformation but obscures the observation of specific binding events.
Molecular Microbiology, 2005
Type IV pili (Tfp) play central roles in prokaryotic cell biology and disease pathogenesis. As dy... more Type IV pili (Tfp) play central roles in prokaryotic cell biology and disease pathogenesis. As dynamic filamentous polymers, they undergo rounds of extension and retraction modelled as pilin subunit polymerization and depolymerization events. Currently, the molecular mechanisms and components influencing Tfp dynamics remain poorly understood. Using Neisseria gonorrhoeae as a model system, we show that mutants lacking any one of a set of five proteins sharing structural similarity to the pilus subunit are dramatically reduced in Tfp expression and that these defects are suppressed in the absence of the PilT pilus retraction protein. Thus, these molecules are not canonical assembly factors but rather act as effectors of pilus homeostasis by promoting extension/polymerization events in the presence of PilT. Furthermore, localization studies support the conclusion that these molecules form a Tfp-associated complex and influence levels of PilC, the epithelial cell adhesin, in Tfp-enriched shear fractions. This is the first time that the step at which individual pilin-like proteins impact on Tfp expression has been defined. The findings have important implications for understanding Tfp dynamics and fundamental Tfp structure/function relationships.
Journal of Medicinal Chemistry, 2006
The 3-aminoquinzolinediones represent a new series of antibacterial agents structurally related t... more The 3-aminoquinzolinediones represent a new series of antibacterial agents structurally related to the fluoroquinolones. They are inhibitors of bacterial gyrase and topoisomerase IV and demonstrate clinically useful antibacterial activity against fastidious Gram-negative and Gram-positive organisms, including multidrug- and fluoroquinolone-resistant organisms. These agents also demonstrate in vivo efficacy in murine systemic infection models.
Journal of Bacteriology, 2003
European Journal of Clinical Microbiology & Infectious Diseases, 2010
The clinical utility of fluoroquinolones (FQs) for the treatment of Pseudomonas aeruginosa (PA) a... more The clinical utility of fluoroquinolones (FQs) for the treatment of Pseudomonas aeruginosa (PA) and other serious Gram-negative infections is currently decreasing due to the rapid emergence of resistance. Because previous studies have shown that efflux is a common mechanism contributing to FQ resistance in PA, one suggested approach to extend the longevity of this class of drugs is combination therapy with an efflux pump inhibitor (EPI). In order to determine the viability of this approach, it is necessary to understand the relative contribution of efflux- vs. target-mediated mechanisms of FQ resistance in the clinic. A set of 26 recent PA clinical isolates were characterized for antibiotic resistance profiles, efflux pump expression, topoisomerase mutations, and FQ susceptibility with and without an EPI. The contribution of OprM to the overall antibiotic resistance was assessed in a subset of these strains. Our results suggest that the co-administration of an EPI with FQs or other antibiotics currently in use would not be sufficient to combat the complexity of resistance mechanisms now present in many clinical isolates.
Biochemistry, 2004
The antibacterial target enoyl-acyl carrier protein (ACP) reductase is a homotetrameric enzyme th... more The antibacterial target enoyl-acyl carrier protein (ACP) reductase is a homotetrameric enzyme that catalyzes the last reductive step of fatty acid biosynthesis. In the present paper, four 2-(2-hydroxyphenoxy)phenol inhibitors, wherein the 4-position substituent varied from H to n-propyl, were studied to determine the contribution of the aliphatic chain to the binding to the wild-type (wt) enoyl-ACP reductase from Escherichia coli (FabI) and a drug-resistant mutant, (F203L)FabI, in which phenylalanine 203 is mutated to leucine. Thermodynamic parameters of ternary complex formation (enzyme-NAD(+)-inhibitor) were determined by isothermal titration calorimetry. The inhibitor affinity to wt FabI and (F203L)FabI increases with increasing aliphatic chain length, although the corresponding affinity for (F203L)FabI is lower, and also, it shows no detectable binding to the 4-H inhibitor. A distinguishing feature of inhibitor binding to either binary enzyme-NAD(+) complex is the apparent negative cooperativity for binding to the tetramer with half-site occupancy. For both enzymes, binding is enthalpy, DeltaH, driven. However, binding DeltaH becomes less favorable with increasing aliphatic chain length. Increases in affinity are found to be exclusively due to favorable changes in solvation entropy. Incremental changes in thermodynamic parameters within the series of inhibitors binding to wt FabI and (F203L)FabI are approximately the same. However, absolute differences between the two enzymes for binding to a given inhibitor are significant, suggesting different binding modes. This finding, coupled with a binding site conformation that is likely to be more rigid in the mutant, appears to result in the drug resistance of (F203L)FabI.
Analytical and Bioanalytical Chemistry, 2011
ABSTRACT Bacterial resistance to antibiotic therapy remains a worldwide problem. In Pseudomonasae... more ABSTRACT Bacterial resistance to antibiotic therapy remains a worldwide problem. In Pseudomonasaeruginosa, rates of efflux confer inherent resistance to many antimicrobial agents, including fluoroquinolones, due to a high level of expression and a relatively high turnover number of the efflux pumps in gram-negative bacteria. To understand the roles of efflux pumps in both the influx and efflux of compounds in P. aeruginosa and to aid the chemistry compound design by bridging in vitro enzymatic binding data (IC(50) values) with whole cell results (MIC numbers), a collaborative effort was put forward to validate a series of bacterial penetration/accumulation assays for assessment of intracellular drug concentration. Initially, using 2-(4-dimethylaminostyryl)-1-ethylpyridinium cation (DMP) as the tracer, a 96-well fluorescence assay was established to measure the time-dependent accumulation of DMP in wild-type (PAO1), MexABOprM deletion (PAO200), and MexABOprM-MexCDOprJ-MexJKL:FRT deletion mutants (PAO314). At steady state, the order of DMP accumulation was PAO314>PAO200>PAO1. Subsequently, the established assay conditions were applied to a radiolabeled assay format using (3)H-labeled ciprofloxacin. At the concentration tested, the accumulation of [(3)H]ciprofloxacin approached a plateau after 15 min and the amount of accumulation in PAO314 was higher (~2- to 10-fold) than that in PAO1. Finally, with an additional step of cell lysis, a liquid chromatography/mass spectrometry-based assay was established with ciprofloxacin with (i) superior sensitivity (the detection limit can be as low as 0.24 ng/ml for ciprofloxacin) and (ii) the ability to monitor cold or nonfluorescent compounds in a drug discovery setting.
Proceedings of the National Academy of Sciences of the United States of America, Jan 10, 2009
As the need for novel antibiotic classes to combat bacterial drug resistance increases, the pauci... more As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious gram-negative pathogens including Haemophilus influenzae...