E. Hosy - Academia.edu (original) (raw)

Papers by E. Hosy

Research paper thumbnail of SK2 channel expression and function in cerebellar Purkinje cells

The Journal of Physiology, 2011

Small-conductance calcium-activated K + channels (SK channels) regulate the excitability of neuro... more Small-conductance calcium-activated K + channels (SK channels) regulate the excitability of neurons and their responsiveness to synaptic input patterns. SK channels contribute to the afterhyperpolarization (AHP) following action potential bursts, and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here we review evidence that SK2 channels are expressed in rat cerebellar Purkinje cells during development and throughout adulthood, and play a key role in diverse cellular processes such as the regulation of the spike firing frequency and the modulation of calcium transients in dendritic spines. In Purkinje cells as well as in other types of neurons, SK2 channel plasticity seems to provide an important mechanism allowing these cells to adjust their intrinsic excitability and to alter the probabilities for the induction of synaptic learning correlates, such as long-term potentiation (LTP).

Research paper thumbnail of Dopamine-Dependent Long-Term Depression at Subthalamo-Nigral Synapses Is Lost in Experimental Parkinsonism

Journal of Neuroscience, 2013

from the progressive loss of dopaminergic neurons of the substantia nigra pars compacta leading t... more from the progressive loss of dopaminergic neurons of the substantia nigra pars compacta leading to abnormal activity within the basal ganglia (BG) network and pathological motor symptoms. Indeed, disrupted plasticity at corticostriatal glutamatergic synapses, the gateway of the BG, is correlated to the onset of PD-related movement disorders and thus has been proposed to be a key neural substrate regulating information flow and motor function in BG circuits. However, a critical question is whether similar plasticity impairments could occur at other glutamatergic connections within the BG that would also affect the inhibitory influence of the network on the motor thalamus. Here, we show that long-term plasticity at subthalamo-nigral glutamatergic synapses (STN-SNr) sculpting the activity patterns of nigral neurons, the main output of the network, is also affected in experimental parkinsonism. Using whole-cell patch-clamp in acute rat brain slices, we describe a molecular pathway supporting an activity-dependent long-term depression of STN-SNr synapses through an NMDAR-and D1/5 dopamine receptor-mediated endocytosis of synaptic AMPA glutamate receptors. We also show that this plastic property is lost in an experimental rat model of PD but can be restored through the recruitment of dopamine D1/5 receptors. Altogether, our findings suggest that pathological impairments of subthalamo-nigral plasticity may enhance BG outputs and thereby contribute to PD-related motor dysfunctions.

Research paper thumbnail of Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95

Journal of Neuroscience, 2013

The spatiotemporal organization of neurotransmitter receptors in postsynaptic membranes is a fund... more The spatiotemporal organization of neurotransmitter receptors in postsynaptic membranes is a fundamental determinant of synaptic transmission and information processing by the brain. Using four independent super-resolution light imaging methods and EM of genetically tagged and endogenous receptors, we show that, in rat hippocampal neurons, AMPARs are often highly concentrated inside synapses into a few clusters of ϳ70 nm that contain ϳ20 receptors. AMPARs are stabilized reversibly in these nanodomains and diffuse freely outside them. Nanodomains are dynamic in their shape and position within synapses and can form or disappear within minutes, although they are mostly stable for up to 1 h. AMPAR nanodomains are often, but not systematically, colocalized with clusters of the scaffold protein PSD95, which are generally of larger size than AMPAR nanoclusters. PSD95 expression level regulates AMPAR nanodomain size and compactness in parallel to miniature EPSC amplitude. Monte Carlo simulations further indicate the impact of AMPAR concentration in clusters on the efficacy of synaptic transmission. The observation that AMPARs are highly concentrated in nanodomains, instead of diffusively distributed in the PSD as generally thought, has important consequences on our understanding of excitatory neurotransmission. Furthermore, our results indicate that glutamatergic synaptic transmission is controlled by the nanometer-scale regulation of the size of these highly concentrated nanodomains. for help in molecular biology and cell cultures; A. Penn for providing custom-made mEPSC analysis software; M. Heilemann for helpful advice on dSTORM; members of the Bordeaux Imaging Center, especially P. Legros for the use of the STED microscope; S. Lacomme and E. Gontier of the Electron Microscopy Facility; S. Marais for help with EM reconstructions; L. Cognet and N. Rebola for helpful discussions; and E. Gouaux for the generous gift of the anti-GluA2 antibody.

Research paper thumbnail of Intrinsic Plasticity Complements Long-Term Potentiation in Parallel Fiber Input Gain Control in Cerebellar Purkinje Cells

Journal of Neuroscience, 2010

plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not i... more plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not impair tonic spike firing in the target neurons of inhibitory Purkinje cell projections in the deep cerebellar nuclei, but lowers the Purkinje cell signal-to-noise ratio, thus reducing the PF readout. These observations suggest that intrinsic plasticity accompanies LTP of active PF synapses, while it reduces at weaker, nonpotentiated synapses the probability for subsequent potentiation and lowers the impact on the Purkinje cell output.

Research paper thumbnail of Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels

Proceedings of the National Academy of Sciences, 2008

At least four genes encoding plasma membrane inward K ؉ channels (Kin channels) are expressed in ... more At least four genes encoding plasma membrane inward K ؉ channels (Kin channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major K in channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell Kin channel (GCKin) activity, providing a model to investigate the roles of this activity in the plant. GCKin activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na ؉ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K ؉ instead of Na ؉ during stomatal opening, thereby preventing deleterious effects of Na ؉ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCKin activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCKin activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments.

Research paper thumbnail of Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging

Proceedings of the National Academy of Sciences, 2012

Simultaneous tracking of many thousands of individual particles in live cells is possible now wit... more Simultaneous tracking of many thousands of individual particles in live cells is possible now with the advent of high-density superresolution imaging methods. We present an approach to extract local biophysical properties of cell-particle interaction from such newly acquired large collection of data. Because classical methods do not keep the spatial localization of individual trajectories, it is not possible to access localized biophysical parameters. In contrast, by combining the high-density superresolution imaging data with the present analysis, we determine the local properties of protein dynamics. We specifically focus on AMPA receptor (AMPAR) trafficking and estimate the strength of their molecular interaction at the subdiffraction level in hippocampal dendrites. These interactions correspond to attracting potential wells of large size, showing that the high density of AMPARs is generated by physical interactions with an ensemble of cooperative membrane surface binding sites, rather than molecular crowding or aggregation, which is the case for the membrane viral glycoprotein VSVG. We further show that AMPARs can either be pushed in or out of dendritic spines. Finally, we characterize the recurrent step of influenza trajectories. To conclude, the present analysis allows the identification of the molecular organization responsible for the heterogeneities of random trajectories in cells.

Research paper thumbnail of Purkinje Cell-Specific Knockout of the Protein Phosphatase PP2B Impairs Potentiation and Cerebellar Motor Learning

Neuron, 2010

Cerebellar motor learning is required to obtain procedural skills. Studies have provided supporti... more Cerebellar motor learning is required to obtain procedural skills. Studies have provided supportive evidence for a potential role of kinase-mediated long-term depression (LTD) at the parallel fiber to Purkinje cell synapse in cerebellar learning. Recently, phosphatases have been implicated in the induction of potentiation of Purkinje cell activities in vitro, but it remains to be shown whether and how phosphatase-mediated potentiation contributes to motor learning. Here, we investigated its possible role by creating and testing a Purkinje cell-specific knockout of calcium/calmodulinactivated protein-phosphatase-2B (L7-PP2B). The selective deletion of PP2B indeed abolished postsynaptic long-term potentiation in Purkinje cells and their ability to increase their excitability, whereas LTD was unaffected. The mutants showed impaired "gain-decrease" and "gain-increase" adaptation of their vestibulo-ocular reflex (VOR) as well as impaired acquisition of classical delay conditioning of their eyeblink response. Thus, our data indicate that PP2B may indeed mediate potentiation in Purkinje cells and contribute prominently to cerebellar motor learning.

Research paper thumbnail of Dynamic Superresolution Imaging of Endogenous Proteins on Living Cells at Ultra-High Density

Biophysical Journal, 2010

Versatile superresolution imaging methods, able to give dynamic information of endogenous molecul... more Versatile superresolution imaging methods, able to give dynamic information of endogenous molecules at high density, are still lacking in biological science. Here, superresolved images and diffusion maps of membrane proteins are obtained on living cells. The method consists of recording thousands of single-molecule trajectories that appear sequentially on a cell surface upon continuously labeling molecules of interest. It allows studying any molecules that can be labeled with fluorescent ligands including endogenous membrane proteins on living cells. This approach, named universal PAINT (uPAINT), generalizes the previously developed point-accumulation-for-imaging-in-nanoscale-topography (PAINT) method for dynamic imaging of arbitrary membrane biomolecules. We show here that the unprecedented large statistics obtained by uPAINT on single cells reveal local diffusion properties of specific proteins, either in distinct membrane compartments of adherent cells or in neuronal synapses.

Research paper thumbnail of SK2 channel expression and function in cerebellar Purkinje cells

The Journal of Physiology, 2011

Small-conductance calcium-activated K + channels (SK channels) regulate the excitability of neuro... more Small-conductance calcium-activated K + channels (SK channels) regulate the excitability of neurons and their responsiveness to synaptic input patterns. SK channels contribute to the afterhyperpolarization (AHP) following action potential bursts, and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here we review evidence that SK2 channels are expressed in rat cerebellar Purkinje cells during development and throughout adulthood, and play a key role in diverse cellular processes such as the regulation of the spike firing frequency and the modulation of calcium transients in dendritic spines. In Purkinje cells as well as in other types of neurons, SK2 channel plasticity seems to provide an important mechanism allowing these cells to adjust their intrinsic excitability and to alter the probabilities for the induction of synaptic learning correlates, such as long-term potentiation (LTP).

Research paper thumbnail of Dopamine-Dependent Long-Term Depression at Subthalamo-Nigral Synapses Is Lost in Experimental Parkinsonism

Journal of Neuroscience, 2013

from the progressive loss of dopaminergic neurons of the substantia nigra pars compacta leading t... more from the progressive loss of dopaminergic neurons of the substantia nigra pars compacta leading to abnormal activity within the basal ganglia (BG) network and pathological motor symptoms. Indeed, disrupted plasticity at corticostriatal glutamatergic synapses, the gateway of the BG, is correlated to the onset of PD-related movement disorders and thus has been proposed to be a key neural substrate regulating information flow and motor function in BG circuits. However, a critical question is whether similar plasticity impairments could occur at other glutamatergic connections within the BG that would also affect the inhibitory influence of the network on the motor thalamus. Here, we show that long-term plasticity at subthalamo-nigral glutamatergic synapses (STN-SNr) sculpting the activity patterns of nigral neurons, the main output of the network, is also affected in experimental parkinsonism. Using whole-cell patch-clamp in acute rat brain slices, we describe a molecular pathway supporting an activity-dependent long-term depression of STN-SNr synapses through an NMDAR-and D1/5 dopamine receptor-mediated endocytosis of synaptic AMPA glutamate receptors. We also show that this plastic property is lost in an experimental rat model of PD but can be restored through the recruitment of dopamine D1/5 receptors. Altogether, our findings suggest that pathological impairments of subthalamo-nigral plasticity may enhance BG outputs and thereby contribute to PD-related motor dysfunctions.

Research paper thumbnail of Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95

Journal of Neuroscience, 2013

The spatiotemporal organization of neurotransmitter receptors in postsynaptic membranes is a fund... more The spatiotemporal organization of neurotransmitter receptors in postsynaptic membranes is a fundamental determinant of synaptic transmission and information processing by the brain. Using four independent super-resolution light imaging methods and EM of genetically tagged and endogenous receptors, we show that, in rat hippocampal neurons, AMPARs are often highly concentrated inside synapses into a few clusters of ϳ70 nm that contain ϳ20 receptors. AMPARs are stabilized reversibly in these nanodomains and diffuse freely outside them. Nanodomains are dynamic in their shape and position within synapses and can form or disappear within minutes, although they are mostly stable for up to 1 h. AMPAR nanodomains are often, but not systematically, colocalized with clusters of the scaffold protein PSD95, which are generally of larger size than AMPAR nanoclusters. PSD95 expression level regulates AMPAR nanodomain size and compactness in parallel to miniature EPSC amplitude. Monte Carlo simulations further indicate the impact of AMPAR concentration in clusters on the efficacy of synaptic transmission. The observation that AMPARs are highly concentrated in nanodomains, instead of diffusively distributed in the PSD as generally thought, has important consequences on our understanding of excitatory neurotransmission. Furthermore, our results indicate that glutamatergic synaptic transmission is controlled by the nanometer-scale regulation of the size of these highly concentrated nanodomains. for help in molecular biology and cell cultures; A. Penn for providing custom-made mEPSC analysis software; M. Heilemann for helpful advice on dSTORM; members of the Bordeaux Imaging Center, especially P. Legros for the use of the STED microscope; S. Lacomme and E. Gontier of the Electron Microscopy Facility; S. Marais for help with EM reconstructions; L. Cognet and N. Rebola for helpful discussions; and E. Gouaux for the generous gift of the anti-GluA2 antibody.

Research paper thumbnail of Intrinsic Plasticity Complements Long-Term Potentiation in Parallel Fiber Input Gain Control in Cerebellar Purkinje Cells

Journal of Neuroscience, 2010

plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not i... more plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not impair tonic spike firing in the target neurons of inhibitory Purkinje cell projections in the deep cerebellar nuclei, but lowers the Purkinje cell signal-to-noise ratio, thus reducing the PF readout. These observations suggest that intrinsic plasticity accompanies LTP of active PF synapses, while it reduces at weaker, nonpotentiated synapses the probability for subsequent potentiation and lowers the impact on the Purkinje cell output.

Research paper thumbnail of Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels

Proceedings of the National Academy of Sciences, 2008

At least four genes encoding plasma membrane inward K ؉ channels (Kin channels) are expressed in ... more At least four genes encoding plasma membrane inward K ؉ channels (Kin channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major K in channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell Kin channel (GCKin) activity, providing a model to investigate the roles of this activity in the plant. GCKin activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na ؉ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K ؉ instead of Na ؉ during stomatal opening, thereby preventing deleterious effects of Na ؉ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCKin activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCKin activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments.

Research paper thumbnail of Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging

Proceedings of the National Academy of Sciences, 2012

Simultaneous tracking of many thousands of individual particles in live cells is possible now wit... more Simultaneous tracking of many thousands of individual particles in live cells is possible now with the advent of high-density superresolution imaging methods. We present an approach to extract local biophysical properties of cell-particle interaction from such newly acquired large collection of data. Because classical methods do not keep the spatial localization of individual trajectories, it is not possible to access localized biophysical parameters. In contrast, by combining the high-density superresolution imaging data with the present analysis, we determine the local properties of protein dynamics. We specifically focus on AMPA receptor (AMPAR) trafficking and estimate the strength of their molecular interaction at the subdiffraction level in hippocampal dendrites. These interactions correspond to attracting potential wells of large size, showing that the high density of AMPARs is generated by physical interactions with an ensemble of cooperative membrane surface binding sites, rather than molecular crowding or aggregation, which is the case for the membrane viral glycoprotein VSVG. We further show that AMPARs can either be pushed in or out of dendritic spines. Finally, we characterize the recurrent step of influenza trajectories. To conclude, the present analysis allows the identification of the molecular organization responsible for the heterogeneities of random trajectories in cells.

Research paper thumbnail of Purkinje Cell-Specific Knockout of the Protein Phosphatase PP2B Impairs Potentiation and Cerebellar Motor Learning

Neuron, 2010

Cerebellar motor learning is required to obtain procedural skills. Studies have provided supporti... more Cerebellar motor learning is required to obtain procedural skills. Studies have provided supportive evidence for a potential role of kinase-mediated long-term depression (LTD) at the parallel fiber to Purkinje cell synapse in cerebellar learning. Recently, phosphatases have been implicated in the induction of potentiation of Purkinje cell activities in vitro, but it remains to be shown whether and how phosphatase-mediated potentiation contributes to motor learning. Here, we investigated its possible role by creating and testing a Purkinje cell-specific knockout of calcium/calmodulinactivated protein-phosphatase-2B (L7-PP2B). The selective deletion of PP2B indeed abolished postsynaptic long-term potentiation in Purkinje cells and their ability to increase their excitability, whereas LTD was unaffected. The mutants showed impaired "gain-decrease" and "gain-increase" adaptation of their vestibulo-ocular reflex (VOR) as well as impaired acquisition of classical delay conditioning of their eyeblink response. Thus, our data indicate that PP2B may indeed mediate potentiation in Purkinje cells and contribute prominently to cerebellar motor learning.

Research paper thumbnail of Dynamic Superresolution Imaging of Endogenous Proteins on Living Cells at Ultra-High Density

Biophysical Journal, 2010

Versatile superresolution imaging methods, able to give dynamic information of endogenous molecul... more Versatile superresolution imaging methods, able to give dynamic information of endogenous molecules at high density, are still lacking in biological science. Here, superresolved images and diffusion maps of membrane proteins are obtained on living cells. The method consists of recording thousands of single-molecule trajectories that appear sequentially on a cell surface upon continuously labeling molecules of interest. It allows studying any molecules that can be labeled with fluorescent ligands including endogenous membrane proteins on living cells. This approach, named universal PAINT (uPAINT), generalizes the previously developed point-accumulation-for-imaging-in-nanoscale-topography (PAINT) method for dynamic imaging of arbitrary membrane biomolecules. We show here that the unprecedented large statistics obtained by uPAINT on single cells reveal local diffusion properties of specific proteins, either in distinct membrane compartments of adherent cells or in neuronal synapses.