Ece Aylı - Academia.edu (original) (raw)

Papers by Ece Aylı

Research paper thumbnail of Analysis of heat transfer enhancement of passive methods in tubes with machine learning

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Oct 23, 2023

Research paper thumbnail of Clean energy generation in residential green buildings

Due to the recent investigations, buildings consume a considerable amount of the electricity, dri... more Due to the recent investigations, buildings consume a considerable amount of the electricity, drinking water, global final energy use and as a result are responsible for one third of the global carbon emissions. Therefore, building sector has a key role to reach global energy targets. In this sight, this study draws attention to the sustainable energy performances of green buildings (GBs) and aims towards the GBs concept which includes renewable sources in the construction and lifetime utilization.

Research paper thumbnail of Design and Construction of a Hydroturbine Test Facility

Bulletin of the American Physical Society, Nov 24, 2014

dropower is one of the clean, renewable, flexible and efficient energy resources. Most of the dev... more dropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

Research paper thumbnail of Supervised learning method for prediction of heat transfer characteristics of nanofluids

Journal of Mechanical Science and Technology, May 1, 2023

Research paper thumbnail of Performance Determination of Axial Wind Tunnel Fan with Reverse Engineering, Numerical and Experimental Methods

Journal of Computing and Information Science in Engineering, Jan 27, 2022

In today’s technology, in case of the need for rehabilitation, renovation, or damage, it is neces... more In today’s technology, in case of the need for rehabilitation, renovation, or damage, it is necessary to recover the problems quickly with a cost-effective approach. In the case of destructive failure, or misdesign of the devices, replacing the problematic part with the new design is crucial. In order to substitute the related part with the efficient one, reverse engineering (RE) methodology is utilized. In this paper, from the perspective of engineering implementation and based on the idea of reverse engineering, axial wind tunnel fan is rehabilitated using numerical and experimental methods. The current study is focused on an axial pressurization fan placed into Cankaya University Mechanical Engineering Laboratory wind tunnel that has firm guaranteed specifications of 5.55 m3/s airflow capacity. The measurements performed during experiments showed that the fan provides less than 60% airflow compared with firm guaranteed specifications. In order to determine the problems of the existing fan, a reverse engineering methodology is developed, and the noncontact data acquisition method is used to form a computer aided drawing (CAD) model. A computational fluid dynamics (CFD) methodology is developed to analyze existing geometry numerically, and results are compared with an experimental study to verify numerical methodology. According to the results, the prediction accuracy of the numerical method can attain 92.95% and 96.38% for flowrate and efficiency, respectively, at the maximum error points.

Research paper thumbnail of Solar Chimney Power Plant Performance for Different Seasons Under Varying Solar Irradiance and Temperature Distribution

Journal of Energy Resources Technology, 2020

One of the most promising renewable energy sources is solar energy due to low cost and low harmfu... more One of the most promising renewable energy sources is solar energy due to low cost and low harmful emissions, and from the 1980s, one of the most beneficial applications of solar energy is the utilization of solar chimney power plants (SCPP). Recently, with the advancement in computer technology, the use of computational fluid dynamics (CFD) methodology for studying SCPP has become an extensive, robust, and powerful technique. In light of the above, in this study, numerical simulations of an SCPP through three-dimensional axisymmetric modeling is performed. A numerical model is created using CFD software, and the results are verified with an experimental study from the literature. The amount of solar radiation and surrounding weather (ambient temperature) were analyzed, and the effects of the irradiance and air temperature on the output power of the SCPP were studied. Ambient temperature is considered as one of the most important factors that influence collector efficiency in a nega...

Research paper thumbnail of Determination and generalization of the effects of design parameters on Francis turbine runner performance

Engineering Applications of Computational Fluid Mechanics, 2016

The runner design is the most challenging part of the turbine design process. Several parameters ... more The runner design is the most challenging part of the turbine design process. Several parameters determine the performance and cavitation characteristics of the runner: the metal angle (flow beta angle), the alpha angle, the blade beta angle, the runner inlet and outlet diameters, and the blade height. All of these geometrical parameters need to be optimized to ensure that the head, flow rate and power requirements of the system are met. A hydraulic designer has to allocate time to optimize these parameters and should be experienced in carrying out the iterative design process. In this article, the turbine runner parameters that affect the performance and cavitation characteristics of designed turbines are examined in detail. Furthermore, turbines are custom designed according to the properties of hydroelectric power plants; this makes the design process even more challenging, as the rotational speed, runner geometry, system head and flow rate vary for each turbine. The effects of the design parameters are examined for four different turbine runners specifically designed and used in actual power plants in order to obtain general results and generalizations applicable to turbine design aided by computational fluid dynamics (CFD). The flow behavior, flow angles, head losses, pressure distribution, and cavitation characteristics are computed, analyzed, and compared. To assist hydraulic designers, the general influences of these parameters on the performance of turbines are summarized and empirical formulations are derived for runner performance characterization.

Research paper thumbnail of Computational Fluid dynamics based hill chart construction and similarity study of prototype and model francis turbines for experimental tests

Research paper thumbnail of Design and Construction of an Experimental Test Rig for Hydraulic Turbines

Every turbine for every hydroelectric power plant is unique; therefore its model has to be design... more Every turbine for every hydroelectric power plant is unique; therefore its model has to be designed using state of the art design techniques and tested before the actual prototype which is costly, is manufactured. In this study, the details of the design and construction of a hydroturbine test facility at TOBB University of Economics and Technology are explained. The facility will be used to test hydroturbine models up 2MWs of power simulating turbine prototypes. The performance and cavitation tests of the turbines will be performed utilizing this facility according to International Electrical Commission (IEC) standards. The test facility is 19 meters long with a base area of around 600 meter squares. The hydraulic analysis of the designed set-up is performed using a system where valves, pipes, structures, water records and connections form an intelligent system, same with the experimental facility. According to the results, system performance is checked, alternative designs are evaluated and operating strategies are defined by minimizing the losses.

Research paper thumbnail of CFD Analysis of 3D Flow for 1.4 MW Francis Turbine and Model Turbine Manufacturing

Hydroenergy is one of the most useful renewable energy sources. Hydropower is a vital source as i... more Hydroenergy is one of the most useful renewable energy sources. Hydropower is a vital source as it is clean, sustainable and cost effective. Francis type hydroturbines are applicable to a wide range of head and flow rate values. Spiral case, stay vane, guide vane, runner and draft tube are the basic components of a Francis turbine. In this paper, CFD based 3D numerical simulations of steady turbulent flow in a Francis turbine for an actual power plant, BUSKI HES in Turkey, is presented.

Research paper thumbnail of Investigation of aerodynamic and aeroacoustic behavior of bio-inspired airfoils with numerical and experimental methods

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

This article presents numerical and experimental studies on the aerodynamic and aeroacoustic char... more This article presents numerical and experimental studies on the aerodynamic and aeroacoustic characteristics of the NACA0012 profile with owl-inspired leading-edge serrations for aeroacoustic control. The leading-edge serrations under investigation are in a sinusoidal profile with two main design parameters of wavelength and amplitude. The noise-suppressing ability of sinusoidal serrations is a function of several parameters such as amplitude, wavelength, inflow speed, angle of attack, which are examined in this study. Amplitude (A) and wavelength (λ) of the serration are varied between 1.25 and 2.5, 20 < λ < 60, respectively. The corresponding Reynolds numbers are between 1 and 3 × 105. The angle of attack for each configuration is changed between 4° and 16°. Forty different configurations are tested. According to the results, owl-inspired leading-edge serrations can be used as aeroacoustic control add-ons in blade designs for wind turbines, aircraft, and fluid machinery. Res...

Research paper thumbnail of Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks

Journal of Mechanical Science and Technology

Research paper thumbnail of Prediction of the onset of shear localization based on machine learning

Artificial Intelligence for Engineering Design, Analysis and Manufacturing

Predicting the onset of shear localization is among the most challenging problems in machining. T... more Predicting the onset of shear localization is among the most challenging problems in machining. This phenomenon affects the process outputs, such as machining forces, surface quality, and machined part tolerances. To predict this phenomenon, analytical, experimental, and numerical methods (especially finite element analysis) are widely used. However, the limitations of each method hinder their industrial applications, demanding a reliable and time-saving approach to predict shear localization onset. Additionally, since this phenomenon largely depends on the type and parameters of the constitutive material model, any change in these parameters requires a new set of simulations, which puts further restrictions on the application of finite element modeling. This study aims to overcome the computational efficiency of the finite element method to predict the onset of shear localization when machining Ti6Al4V using machine learning methods. The obtained results demonstrate that the FCM (f...

Research paper thumbnail of Supervised learning method for prediction of heat transfer characteristics of nanofluids

Journal of Mechanical Science and Technology

Research paper thumbnail of Performance Optimization of Finned Surfaces Based on the Experimental and Numerical Study

Journal of Thermal Science and Engineering Applications

This paper presents the findings of numerical and experimental investigations into the forced con... more This paper presents the findings of numerical and experimental investigations into the forced convection heat transfer from horizontal surfaces with straight rectangular fins at Reynolds numbers ranging from 23,600 to 150,000. A test setup was constructed to measure the heat transfer rate from a horizontal surface with a constant number of fins, fin width, and fin length under different flow conditions. Two-dimensional numerical analyses were performed to observe the heat transfer and flow behavior using a computer program developed based on the openfoam platform. The code developed was verified by comparing the numerical results with the experimental results. The effect of geometrical parameters on heat transfer coefficient and Nusselt number was investigated for different fin height and width ratios. Results showed that heat transfer can be increased by modifying the fin structure geometrical parameters. A correlation for Nusselt number was developed and presented for steady-state...

Research paper thumbnail of Machine Learning Based Developing Flow Control Technique Over Circular Cylinders

Journal of Computing and Information Science in Engineering

This paper demonstrates the feasibility of blowing and suction for flow control based on the comp... more This paper demonstrates the feasibility of blowing and suction for flow control based on the computational fluid dynamics (CFD) simulations at a low Reynolds number flows. The effects of blowing and suction position, and the blowing and suction mass flowrate, and on the flow control are presented in this paper. The optimal conditions for suppressing the wake of the cylinder are investigated by examining the flow separation and the near wake region; analyzing the aerodynamic force (lift and drag) fluctuations using the fast Fourier transform (FFT) to separate the effects of small-scale turbulent structures in the wake region. A method for stochastic analysis using machine learning techniques is proposed. Three different novel machine learning methods were applied to CFD results to predict the variation in drag coefficient due to the vortex shedding. Although, the prediction power of all the methods utilized is in the acceptable accuracy range, the Gaussian process regression (GPR) me...

Research paper thumbnail of Passive and Active Control of Acoustic Resonance in Cavity Flows Using Ffowcs-Williams-Hawkings Equations

In the aerospace industry, interior storage carriages, that carry items such as weapons and bombs... more In the aerospace industry, interior storage carriages, that carry items such as weapons and bombs form cavities. The turbulence-cavity interaction causes significant vibration, sound pressure levels, resonance, and structural problems. Therefore, control methods are can be useful to reduce drag, minimize pressure fluctuations and SPL levels. This work studies the passive flow control methods to reduce the noise induced by the flow over the cavity. For this purpose, cavity leading, and trailing edge wall modifications were made such as inclination, placing a block upstream of the cavity, blowing from the cavity walls. Broadband nature of the noise sources is captured generally with DNS or LES approach. Large Eddy Simulations (LES) is used to compute the flow field to reduce computational cost. ANSYS Fluent software is utilized to solve compressible, two-dimensional, transient subsonic cavity flow. For the determination of sound pressure levels, Ffowcs-Williams– Hawkings (FW-H) integr...

Research paper thumbnail of 4.2 Heat Exchangers

This chapter aims to provide information on classification, types, design methodology, and select... more This chapter aims to provide information on classification, types, design methodology, and selection of heat exchangers (HEX), focusing on plate HEX. The details of a software developed based on correlations obtained using experimental data are presented. Plate HEX literature is explained in detail and the correlations in literature are used in the developed HEX selection software for comparison with the new correlations. The analysis shows that specific correlations based on experimental data are necessary to be used with plates utilized in HEX selection, since the plate geometries are unique and need specific correlations to reflect their properties correctly.

Research paper thumbnail of Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning

Journal of Energy Resources Technology, 2021

Green energy has seen a huge surge of interest recently due to various environmental and financia... more Green energy has seen a huge surge of interest recently due to various environmental and financial reasons. To extract the most out of a renewable system and to go greener, new approaches are evolving. In this paper, the capability of Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System in geometrical optimization of a solar chimney power plant (SCPP) to enhance generated power is investigated to reduce the time cost and errors when optimization is performed with numerical or experimental methods. It is seen that both properly constructed artificial neural networks (ANN) and adaptive-network-based fuzzy inference system (ANFIS) optimized geometries give higher performance than the numerical results. Also, to validate the accuracy of the ANN and ANFIS predictions, the obtained results are compared with the numerical results. Both soft computing methods over predict the power output values with MRE values of 12.36% and 7.25% for ANN and ANFIS, respectively. It is seen t...

Research paper thumbnail of Numerical investigation on the performance of a small counter-rotating wind turbine

E3S Web of Conferences, 2019

The article presents results of the investigation on the performance of a small counter-rotating ... more The article presents results of the investigation on the performance of a small counter-rotating wind turbine. Wind turbine has been simulated using Computational Fluid Dynamics methods. Actuator Line Model has been successfully used to represent rotors in computational domain. Parametric study has been carried out, taking into account changes in the tip speed ratio of the rotors while maintaining a constant distance between upwind and downwind rotor. Study results revealed noticeable increase in power coefficient for optimal configuration. Dynamic interaction between rotors has been investigated exposing no significant interference in both torque and power.

Research paper thumbnail of Analysis of heat transfer enhancement of passive methods in tubes with machine learning

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Oct 23, 2023

Research paper thumbnail of Clean energy generation in residential green buildings

Due to the recent investigations, buildings consume a considerable amount of the electricity, dri... more Due to the recent investigations, buildings consume a considerable amount of the electricity, drinking water, global final energy use and as a result are responsible for one third of the global carbon emissions. Therefore, building sector has a key role to reach global energy targets. In this sight, this study draws attention to the sustainable energy performances of green buildings (GBs) and aims towards the GBs concept which includes renewable sources in the construction and lifetime utilization.

Research paper thumbnail of Design and Construction of a Hydroturbine Test Facility

Bulletin of the American Physical Society, Nov 24, 2014

dropower is one of the clean, renewable, flexible and efficient energy resources. Most of the dev... more dropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

Research paper thumbnail of Supervised learning method for prediction of heat transfer characteristics of nanofluids

Journal of Mechanical Science and Technology, May 1, 2023

Research paper thumbnail of Performance Determination of Axial Wind Tunnel Fan with Reverse Engineering, Numerical and Experimental Methods

Journal of Computing and Information Science in Engineering, Jan 27, 2022

In today’s technology, in case of the need for rehabilitation, renovation, or damage, it is neces... more In today’s technology, in case of the need for rehabilitation, renovation, or damage, it is necessary to recover the problems quickly with a cost-effective approach. In the case of destructive failure, or misdesign of the devices, replacing the problematic part with the new design is crucial. In order to substitute the related part with the efficient one, reverse engineering (RE) methodology is utilized. In this paper, from the perspective of engineering implementation and based on the idea of reverse engineering, axial wind tunnel fan is rehabilitated using numerical and experimental methods. The current study is focused on an axial pressurization fan placed into Cankaya University Mechanical Engineering Laboratory wind tunnel that has firm guaranteed specifications of 5.55 m3/s airflow capacity. The measurements performed during experiments showed that the fan provides less than 60% airflow compared with firm guaranteed specifications. In order to determine the problems of the existing fan, a reverse engineering methodology is developed, and the noncontact data acquisition method is used to form a computer aided drawing (CAD) model. A computational fluid dynamics (CFD) methodology is developed to analyze existing geometry numerically, and results are compared with an experimental study to verify numerical methodology. According to the results, the prediction accuracy of the numerical method can attain 92.95% and 96.38% for flowrate and efficiency, respectively, at the maximum error points.

Research paper thumbnail of Solar Chimney Power Plant Performance for Different Seasons Under Varying Solar Irradiance and Temperature Distribution

Journal of Energy Resources Technology, 2020

One of the most promising renewable energy sources is solar energy due to low cost and low harmfu... more One of the most promising renewable energy sources is solar energy due to low cost and low harmful emissions, and from the 1980s, one of the most beneficial applications of solar energy is the utilization of solar chimney power plants (SCPP). Recently, with the advancement in computer technology, the use of computational fluid dynamics (CFD) methodology for studying SCPP has become an extensive, robust, and powerful technique. In light of the above, in this study, numerical simulations of an SCPP through three-dimensional axisymmetric modeling is performed. A numerical model is created using CFD software, and the results are verified with an experimental study from the literature. The amount of solar radiation and surrounding weather (ambient temperature) were analyzed, and the effects of the irradiance and air temperature on the output power of the SCPP were studied. Ambient temperature is considered as one of the most important factors that influence collector efficiency in a nega...

Research paper thumbnail of Determination and generalization of the effects of design parameters on Francis turbine runner performance

Engineering Applications of Computational Fluid Mechanics, 2016

The runner design is the most challenging part of the turbine design process. Several parameters ... more The runner design is the most challenging part of the turbine design process. Several parameters determine the performance and cavitation characteristics of the runner: the metal angle (flow beta angle), the alpha angle, the blade beta angle, the runner inlet and outlet diameters, and the blade height. All of these geometrical parameters need to be optimized to ensure that the head, flow rate and power requirements of the system are met. A hydraulic designer has to allocate time to optimize these parameters and should be experienced in carrying out the iterative design process. In this article, the turbine runner parameters that affect the performance and cavitation characteristics of designed turbines are examined in detail. Furthermore, turbines are custom designed according to the properties of hydroelectric power plants; this makes the design process even more challenging, as the rotational speed, runner geometry, system head and flow rate vary for each turbine. The effects of the design parameters are examined for four different turbine runners specifically designed and used in actual power plants in order to obtain general results and generalizations applicable to turbine design aided by computational fluid dynamics (CFD). The flow behavior, flow angles, head losses, pressure distribution, and cavitation characteristics are computed, analyzed, and compared. To assist hydraulic designers, the general influences of these parameters on the performance of turbines are summarized and empirical formulations are derived for runner performance characterization.

Research paper thumbnail of Computational Fluid dynamics based hill chart construction and similarity study of prototype and model francis turbines for experimental tests

Research paper thumbnail of Design and Construction of an Experimental Test Rig for Hydraulic Turbines

Every turbine for every hydroelectric power plant is unique; therefore its model has to be design... more Every turbine for every hydroelectric power plant is unique; therefore its model has to be designed using state of the art design techniques and tested before the actual prototype which is costly, is manufactured. In this study, the details of the design and construction of a hydroturbine test facility at TOBB University of Economics and Technology are explained. The facility will be used to test hydroturbine models up 2MWs of power simulating turbine prototypes. The performance and cavitation tests of the turbines will be performed utilizing this facility according to International Electrical Commission (IEC) standards. The test facility is 19 meters long with a base area of around 600 meter squares. The hydraulic analysis of the designed set-up is performed using a system where valves, pipes, structures, water records and connections form an intelligent system, same with the experimental facility. According to the results, system performance is checked, alternative designs are evaluated and operating strategies are defined by minimizing the losses.

Research paper thumbnail of CFD Analysis of 3D Flow for 1.4 MW Francis Turbine and Model Turbine Manufacturing

Hydroenergy is one of the most useful renewable energy sources. Hydropower is a vital source as i... more Hydroenergy is one of the most useful renewable energy sources. Hydropower is a vital source as it is clean, sustainable and cost effective. Francis type hydroturbines are applicable to a wide range of head and flow rate values. Spiral case, stay vane, guide vane, runner and draft tube are the basic components of a Francis turbine. In this paper, CFD based 3D numerical simulations of steady turbulent flow in a Francis turbine for an actual power plant, BUSKI HES in Turkey, is presented.

Research paper thumbnail of Investigation of aerodynamic and aeroacoustic behavior of bio-inspired airfoils with numerical and experimental methods

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

This article presents numerical and experimental studies on the aerodynamic and aeroacoustic char... more This article presents numerical and experimental studies on the aerodynamic and aeroacoustic characteristics of the NACA0012 profile with owl-inspired leading-edge serrations for aeroacoustic control. The leading-edge serrations under investigation are in a sinusoidal profile with two main design parameters of wavelength and amplitude. The noise-suppressing ability of sinusoidal serrations is a function of several parameters such as amplitude, wavelength, inflow speed, angle of attack, which are examined in this study. Amplitude (A) and wavelength (λ) of the serration are varied between 1.25 and 2.5, 20 < λ < 60, respectively. The corresponding Reynolds numbers are between 1 and 3 × 105. The angle of attack for each configuration is changed between 4° and 16°. Forty different configurations are tested. According to the results, owl-inspired leading-edge serrations can be used as aeroacoustic control add-ons in blade designs for wind turbines, aircraft, and fluid machinery. Res...

Research paper thumbnail of Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks

Journal of Mechanical Science and Technology

Research paper thumbnail of Prediction of the onset of shear localization based on machine learning

Artificial Intelligence for Engineering Design, Analysis and Manufacturing

Predicting the onset of shear localization is among the most challenging problems in machining. T... more Predicting the onset of shear localization is among the most challenging problems in machining. This phenomenon affects the process outputs, such as machining forces, surface quality, and machined part tolerances. To predict this phenomenon, analytical, experimental, and numerical methods (especially finite element analysis) are widely used. However, the limitations of each method hinder their industrial applications, demanding a reliable and time-saving approach to predict shear localization onset. Additionally, since this phenomenon largely depends on the type and parameters of the constitutive material model, any change in these parameters requires a new set of simulations, which puts further restrictions on the application of finite element modeling. This study aims to overcome the computational efficiency of the finite element method to predict the onset of shear localization when machining Ti6Al4V using machine learning methods. The obtained results demonstrate that the FCM (f...

Research paper thumbnail of Supervised learning method for prediction of heat transfer characteristics of nanofluids

Journal of Mechanical Science and Technology

Research paper thumbnail of Performance Optimization of Finned Surfaces Based on the Experimental and Numerical Study

Journal of Thermal Science and Engineering Applications

This paper presents the findings of numerical and experimental investigations into the forced con... more This paper presents the findings of numerical and experimental investigations into the forced convection heat transfer from horizontal surfaces with straight rectangular fins at Reynolds numbers ranging from 23,600 to 150,000. A test setup was constructed to measure the heat transfer rate from a horizontal surface with a constant number of fins, fin width, and fin length under different flow conditions. Two-dimensional numerical analyses were performed to observe the heat transfer and flow behavior using a computer program developed based on the openfoam platform. The code developed was verified by comparing the numerical results with the experimental results. The effect of geometrical parameters on heat transfer coefficient and Nusselt number was investigated for different fin height and width ratios. Results showed that heat transfer can be increased by modifying the fin structure geometrical parameters. A correlation for Nusselt number was developed and presented for steady-state...

Research paper thumbnail of Machine Learning Based Developing Flow Control Technique Over Circular Cylinders

Journal of Computing and Information Science in Engineering

This paper demonstrates the feasibility of blowing and suction for flow control based on the comp... more This paper demonstrates the feasibility of blowing and suction for flow control based on the computational fluid dynamics (CFD) simulations at a low Reynolds number flows. The effects of blowing and suction position, and the blowing and suction mass flowrate, and on the flow control are presented in this paper. The optimal conditions for suppressing the wake of the cylinder are investigated by examining the flow separation and the near wake region; analyzing the aerodynamic force (lift and drag) fluctuations using the fast Fourier transform (FFT) to separate the effects of small-scale turbulent structures in the wake region. A method for stochastic analysis using machine learning techniques is proposed. Three different novel machine learning methods were applied to CFD results to predict the variation in drag coefficient due to the vortex shedding. Although, the prediction power of all the methods utilized is in the acceptable accuracy range, the Gaussian process regression (GPR) me...

Research paper thumbnail of Passive and Active Control of Acoustic Resonance in Cavity Flows Using Ffowcs-Williams-Hawkings Equations

In the aerospace industry, interior storage carriages, that carry items such as weapons and bombs... more In the aerospace industry, interior storage carriages, that carry items such as weapons and bombs form cavities. The turbulence-cavity interaction causes significant vibration, sound pressure levels, resonance, and structural problems. Therefore, control methods are can be useful to reduce drag, minimize pressure fluctuations and SPL levels. This work studies the passive flow control methods to reduce the noise induced by the flow over the cavity. For this purpose, cavity leading, and trailing edge wall modifications were made such as inclination, placing a block upstream of the cavity, blowing from the cavity walls. Broadband nature of the noise sources is captured generally with DNS or LES approach. Large Eddy Simulations (LES) is used to compute the flow field to reduce computational cost. ANSYS Fluent software is utilized to solve compressible, two-dimensional, transient subsonic cavity flow. For the determination of sound pressure levels, Ffowcs-Williams– Hawkings (FW-H) integr...

Research paper thumbnail of 4.2 Heat Exchangers

This chapter aims to provide information on classification, types, design methodology, and select... more This chapter aims to provide information on classification, types, design methodology, and selection of heat exchangers (HEX), focusing on plate HEX. The details of a software developed based on correlations obtained using experimental data are presented. Plate HEX literature is explained in detail and the correlations in literature are used in the developed HEX selection software for comparison with the new correlations. The analysis shows that specific correlations based on experimental data are necessary to be used with plates utilized in HEX selection, since the plate geometries are unique and need specific correlations to reflect their properties correctly.

Research paper thumbnail of Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning

Journal of Energy Resources Technology, 2021

Green energy has seen a huge surge of interest recently due to various environmental and financia... more Green energy has seen a huge surge of interest recently due to various environmental and financial reasons. To extract the most out of a renewable system and to go greener, new approaches are evolving. In this paper, the capability of Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System in geometrical optimization of a solar chimney power plant (SCPP) to enhance generated power is investigated to reduce the time cost and errors when optimization is performed with numerical or experimental methods. It is seen that both properly constructed artificial neural networks (ANN) and adaptive-network-based fuzzy inference system (ANFIS) optimized geometries give higher performance than the numerical results. Also, to validate the accuracy of the ANN and ANFIS predictions, the obtained results are compared with the numerical results. Both soft computing methods over predict the power output values with MRE values of 12.36% and 7.25% for ANN and ANFIS, respectively. It is seen t...

Research paper thumbnail of Numerical investigation on the performance of a small counter-rotating wind turbine

E3S Web of Conferences, 2019

The article presents results of the investigation on the performance of a small counter-rotating ... more The article presents results of the investigation on the performance of a small counter-rotating wind turbine. Wind turbine has been simulated using Computational Fluid Dynamics methods. Actuator Line Model has been successfully used to represent rotors in computational domain. Parametric study has been carried out, taking into account changes in the tip speed ratio of the rotors while maintaining a constant distance between upwind and downwind rotor. Study results revealed noticeable increase in power coefficient for optimal configuration. Dynamic interaction between rotors has been investigated exposing no significant interference in both torque and power.