Eduard Torrents - Academia.edu (original) (raw)

Papers by Eduard Torrents

Research paper thumbnail of Easily applicable modifications to electroporation conditions improve the transformation efficiency rates for rough morphotypes of fast-growing mycobacteria

Research paper thumbnail of Nano-engineering stable contact-based antimicrobials: Chemistry at the interface between nano-gold and bacteria

Colloids and Surfaces B: Biointerfaces

Research paper thumbnail of Phage-Encoded Endolysins

Antibiotics

Due to the global emergence of antibiotic resistance, there has been an increase in research surr... more Due to the global emergence of antibiotic resistance, there has been an increase in research surrounding endolysins as an alternative therapeutic. Endolysins are phage-encoded enzymes, utilized by mature phage virions to hydrolyze the cell wall from within. There is significant evidence that proves the ability of endolysins to degrade the peptidoglycan externally without the assistance of phage. Thus, their incorporation in therapeutic strategies has opened new options for therapeutic application against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology sectors. While endolysins show promising results within the laboratory, it is important to document their resistance, safety, and immunogenicity for in-vivo application. This review aims to provide new insights into the synergy between endolysins and antibiotics, as well as the formulation of endolysins. Thus, it provides crucial information for clinical trials involving en...

Research paper thumbnail of A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility

npj Biofilms and Microbiomes

Currently, three major circumstances threaten the management of bacterial infections: increasing ... more Currently, three major circumstances threaten the management of bacterial infections: increasing antimicrobial resistance, expansion of chronic biofilm-associated infections, and lack of an appropriate approach to treat them. To date, the development of accelerated drug susceptibility testing of biofilms and of new antibiofouling systems has not been achieved despite the availability of different methodologies. There is a need for easy-to-use methods of testing the antibiotic susceptibility of bacteria that form biofilms and for screening new possible antibiofilm strategies. Herein, we present a microfluidic platform with an integrated interdigitated sensor (BiofilmChip). This new device allows an irreversible and homogeneous attachment of bacterial cells of clinical origin, even directly from clinical specimens, and the biofilms grown can be monitored by confocal microscopy or electrical impedance spectroscopy. The device proved to be suitable to study polymicrobial communities, as...

Research paper thumbnail of Monitoring Gene Expression during a Galleria mellonella Bacterial Infection

Microorganisms

Galleria mellonella larvae are an alternative in vivo model that has been extensively used to stu... more Galleria mellonella larvae are an alternative in vivo model that has been extensively used to study the virulence and pathogenicity of different bacteria due to its practicality and lack of ethical constraints. However, the larvae possess intrinsic autofluorescence that obstructs the use of fluorescent proteins to study bacterial infections, hence better methodologies are needed. Here, we report the construction of a promoter probe vector with bioluminescence expression as well as the optimization of a total bacterial RNA extraction protocol to enhance the monitoring of in vivo infections. By employing the vector to construct different gene promoter fusions, variable gene expression levels were efficiently measured in G. mellonella larvae at various time points during the course of infection and without much manipulation of the larvae. Additionally, our optimized RNA extraction protocol facilitates the study of transcriptional gene levels during an in vivo infection. The proposed me...

Research paper thumbnail of Mycolicibacterium brumae is a Safe and Non-Toxic Immunomodulatory Agent for Cancer Treatment

Vaccines

Intravesical Mycobacterium bovis Bacillus Calmette–Guérin (BCG) immunotherapy remains the gold-st... more Intravesical Mycobacterium bovis Bacillus Calmette–Guérin (BCG) immunotherapy remains the gold-standard treatment for non-muscle-invasive bladder cancer patients, even though half of the patients develop adverse events to this therapy. On exploring BCG-alternative therapies, Mycolicibacterium brumae, a nontuberculous mycobacterium, has shown outstanding anti-tumor and immunomodulatory capabilities. As no infections due to M. brumae in humans, animals, or plants have been described, the safety and/or toxicity of this mycobacterium have not been previously addressed. In the present study, an analysis was made of M. brumae- and BCG-intravenously-infected severe combined immunodeficient (SCID) mice, M. brumae-intravesically-treated BALB/c mice, and intrahemacoelic-infected-Galleria mellonella larvae. Organs from infected mice and the hemolymph from larvae were processed to count bacterial burden. Blood samples from mice were also taken, and a wide range of hematological and biochemical ...

Research paper thumbnail of A clearing protocol for Galleria mellonella larvae: Visualization of internalized fluorescent nanoparticles

Research paper thumbnail of Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle

Virulence

Intracellular invasion is an advantageous mechanism used by pathogens to evade host defense and a... more Intracellular invasion is an advantageous mechanism used by pathogens to evade host defense and antimicrobial therapy. In patients, the intracellular microbial lifestyle can lead to infection persistence and recurrence, thus worsening outcomes. Lung infections caused by Pseudomonas aeruginosa, especially in cystic fibrosis (CF) patients, are often aggravated by intracellular invasion and persistence of the pathogen. Proliferation of the infectious species relies on a continuous deoxyribonucleotide (dNTP) supply, for which the ribonucleotide reductase enzyme (RNR) is the unique provider. The large genome plasticity of P. aeruginosa and its ability to rapidly adapt to different environments are challenges for studying the pathophysiology associated with this type of infection. Using different reference strains and clinical isolates of P. aeruginosa independently combined with alveolar (A549) and bronchial (16HBE14o-and CF-CFBE41o-) epithelial cells, we analyzed host-pathogen interactions and intracellular bacterial persistence with the aim of determining a cell type-directed infection promoted by the P. aeruginosa strains. The oscillations in cellular toxicity and oxygen consumption promoted by the intracellular persistence of the strains were also analyzed among the different infectious lung models. Significantly, we identified class II RNR as the enzyme that supplies dNTPs to intracellular P. aeruginosa. This discovery could contribute to the development of RNR-targeted strategies against the chronicity occurring in this type of lung infection. Overall our study demonstrates that the choice of bacterial strain is critical to properly study the type of infectious process with relevant translational outcomes.

Research paper thumbnail of Gradual adaptation of facultative anaerobic pathogens to microaerobic and anaerobic conditions

Research paper thumbnail of Mapping the Dielectric Constant of a Single Bacterial Cell at the Nanoscale with Scanning Dielectric Force Volume Microscopy

Nanoscale

Mapping the dielectric constant at the nanoscale of samples showing a complex topography, such as... more Mapping the dielectric constant at the nanoscale of samples showing a complex topography, such as non-planar nanocomposite materials or single cells, poses formidable challenges to existing nanoscale dielectric microscopy techniques....

Research paper thumbnail of Aerobic Vitamin B12 Biosynthesis Is Essential for Pseudomonas aeruginosa Class II Ribonucleotide Reductase Activity During Planktonic and Biofilm Growth

Frontiers in Microbiology

Pseudomonas aeruginosa is a major pathogenic bacterium in chronic infections and is a model organ... more Pseudomonas aeruginosa is a major pathogenic bacterium in chronic infections and is a model organism for studying biofilms. P. aeruginosa is considered an aerobic bacterium, but in the presence of nitrate, it also grows in anaerobic conditions. Oxygen diffusion through the biofilm generates metabolic and genetic diversity in P. aeruginosa growth, such as in ribonucleotide reductase activity. These essential enzymes are necessary for DNA synthesis and repair. Oxygen availability determines the activity of the three-ribonucleotide reductase (RNR) classes. Class II and III RNRs are active in the absence of oxygen; however, class II RNRs, which are important in P. aeruginosa biofilm growth, require a vitamin B 12 cofactor for their enzymatic activity. In this work, we elucidated the conditions in which class II RNRs are active due to vitamin B 12 concentration constraints (biosynthesis or environmental availability). We demonstrated that increased vitamin B 12 levels during aerobic, stationary and biofilm growth activate class II RNR activity. We also established that the cobN gene is essentially responsible for B 12 biosynthesis under planktonic and biofilm growth. Our results unravel the mechanisms of dNTP synthesis by P. aeruginosa during biofilm growth, which appear to depend on the bacterial strain (laboratory-type or clinical isolate).

Research paper thumbnail of High time resolution and high signal-to-noise monitoring of the bacterial growth kinetics in the presence of plasmonic nanoparticles

Journal of Nanobiotechnology

Background: Emerging concepts for designing innovative drugs (i.e., novel generations of antimicr... more Background: Emerging concepts for designing innovative drugs (i.e., novel generations of antimicrobials) frequently include nanostructures, new materials, and nanoparticles (NPs). Along with numerous advantages, NPs bring limitations, partly because they can limit the analytical techniques used for their biological and in vivo validation. From that standpoint, designing innovative drug delivery systems requires advancements in the methods used for their testing and investigations. Considering the well-known ability of resazurin-based methods for rapid detection of bacterial metabolisms with very high sensitivity, in this work we report a novel optimization for tracking bacterial growth kinetics in the presence of NPs with specific characteristics, such as specific optical properties. Results: Arginine-functionalized gold composite (HAp/Au/arginine) NPs, used as the NP model for validation of the method, possess plasmonic properties and are characterized by intensive absorption in the UV/vis region with a surface plasmon resonance maximum at 540 nm. Due to the specific optical properties, the NP absorption intensively interferes with the light absorption measured during the evaluation of bacterial growth (optical density; OD 600). The results confirm substantial nonspecific interference by NPs in the signal detected during a regular turbidity study used for tracking bacterial growth. Instead, during application of a resazurin-based method (Presto Blue), when a combination of absorption and fluorescence detection is applied, a substantial increase in the signal-to-noise ratio is obtained that leads to the improvement of the accuracy of the measurements as verified in three bacterial strains tested with different growth rates (E. coli, P. aeruginosa, and S. aureus). Conclusions: Here, we described a novel procedure that enables the kinetics of bacterial growth in the presence of NPs to be followed with high time resolution, high sensitivity, and without sampling during the kinetic study. We showed the applicability of the Presto Blue method for the case of HAp/Au/arginine NPs, which can be extended to various types of metallic NPs with similar characteristics. The method is a very easy, economical, and reliable option for testing NPs designed as novel antimicrobials.

Research paper thumbnail of New Water-Soluble Copper(II) Complexes with Morpholine-Thiosemicarbazone Hybrids: Insights into the Anticancer and Antibacterial Mode of Action

Journal of Medicinal Chemistry

Six morpholine-(iso)thiosemicarbazone hybrids HL 1 −HL 6 and their Cu(II) complexes with good-tom... more Six morpholine-(iso)thiosemicarbazone hybrids HL 1 −HL 6 and their Cu(II) complexes with good-tomoderate solubility and stability in water were synthesized and characterized. Cu(II) complexes [Cu(L 1−6)Cl] (1−6) formed weak dimeric associates in the solid state, which did not remain intact in solution as evidenced by ESI-MS. The lead proligands and Cu(II) complexes displayed higher antiproliferative activity in cancer cells than triapine. In addition, complexes 2−5 were found to specifically inhibit the growth of Gram-positive bacteria Staphylococcus aureus with MIC 50 values at 2−5 μg/mL. Insights into the processes controlling intracellular accumulation and mechanism of action were investigated for 2 and 5, including the role of ribonucleotide reductase (RNR) inhibition, endoplasmic reticulum stress induction, and regulation of other cancer signaling pathways. Their ability to moderately inhibit R2 RNR protein in the presence of dithiothreitol is likely related to Fe chelating properties of the proligands liberated upon reduction.

Research paper thumbnail of Pentafluorosulfanyl-containing Triclocarban Analogs with Potent Antimicrobial Activity

Molecules

Concerns have been raised about the long-term accumulating effects of triclocarban, a polychlorin... more Concerns have been raised about the long-term accumulating effects of triclocarban, a polychlorinated diarylurea widely used as an antibacterial soap additive, in the environment and in human beings. Indeed, the Food and Drug Administration has recently banned it from personal care products. Herein, we report the synthesis, antibacterial activity and cytotoxicity of novel N,N′-diarylureas as triclocarban analogs, designed by reducing one or more chlorine atoms of the former and/or replacing them by the novel pentafluorosulfanyl group, a new bioisostere of the trifluoromethyl group, with growing importance in drug discovery. Interestingly, some of these pentafluorosulfanyl-bearing ureas exhibited high potency, broad spectrum of antimicrobial activity against Gram-positive bacterial pathogens, and high selectivity index, while displaying a lower spontaneous mutation frequency than triclocarban. Some lines of evidence suggest a bactericidal mode of action for this family of compounds.

Research paper thumbnail of A single point mutation in class III ribonucleotide reductase promoter renders Pseudomonas aeruginosa PAO1 inefficient for anaerobic growth and infection

Scientific reports, Jan 17, 2017

Pseudomonas aeruginosa strain PAO1 has become the reference strain in many laboratories. One enzy... more Pseudomonas aeruginosa strain PAO1 has become the reference strain in many laboratories. One enzyme that is essential for its cell division is the ribonucleotide reductase (RNR) enzyme that supplies the deoxynucleotides required for DNA synthesis and repair. P. aeruginosa is one of the few microorganisms that encodes three different RNR classes (Ia, II and III) in its genome, enabling it to grow and adapt to diverse environmental conditions, including during infection. In this work, we demonstrate that a lack of RNR activity induces cell elongation in P. aeruginosa PAO1. Moreover, RNR gene expression during anaerobiosis differs among P. aeruginosa strains, with class III highly expressed in P. aeruginosa clinical isolates relative to the laboratory P. aeruginosa PAO1 strain. A single point mutation was identified in the P. aeruginosa PAO1 strain class III RNR promoter region that disrupts its anaerobic transcription by the Dnr regulator. An engineered strain that induces the class I...

Research paper thumbnail of High-dose daptomycin is effective as an antibiotic-lock therapy in a rabbit model of Staphylococcus epidermidis catheter-related infection

Antimicrobial agents and chemotherapy, Jan 20, 2017

Long-term catheter-related bloodstream infections (CRBSI) involving coagulase-negative Staphyloco... more Long-term catheter-related bloodstream infections (CRBSI) involving coagulase-negative Staphylococci are associated with poor patient outcomes, increased hospitalization and high treatment costs. The use of vancomycin-lock therapy has been an important step forward to treat these biofilms although failures appear in 20% of patients. In this study, we report that a high dose of daptomycin-lock therapy may offer a therapeutic advantage for these CRBSI in just 24 h of treatment.

Research paper thumbnail of Erratum to: Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons

Molecular neurobiology, Jan 5, 2017

The presentation Dr. José Manuel García-Aznar's name was incorrect. BGarcía-Aznar^should be his F... more The presentation Dr. José Manuel García-Aznar's name was incorrect. BGarcía-Aznar^should be his Family Name. Citation should be BGarcía-Aznar, JM^instead of BAznar, JMG^. Also the two affiliations below of Dr. Josep Samitier were missing.

Research paper thumbnail of Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons

Molecular neurobiology, Jan 22, 2017

The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amy... more The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrP(C)-overexpressing mice. In addition, α-synuclein binds strongly on PrP(C)-expressing cells, suggesting a role in modulating the effect of α-synuclein fibrils.

Research paper thumbnail of A single transcription factor behind all bacterial dNTP synthesis revealed as a novel antimicrobial target

Research paper thumbnail of Efficacy of anidulafungin in the treatment of experimental Candida parapsilosis catheter infection using an antifungal-lock technique

The Journal of antimicrobial chemotherapy, Oct 4, 2016

The effectiveness of anidulafungin versus liposomal amphotericin B (LAmB) for treating experiment... more The effectiveness of anidulafungin versus liposomal amphotericin B (LAmB) for treating experimental Candida parapsilosis catheter-related infection by an antifungal-lock technique was assessed. Two clinical strains of C. parapsilosis (CP12 and CP54) were studied. In vitro studies were used to determine the biofilm MICs (MBIC50 and MBIC90) by XTT reduction assay and LIVE/DEAD biofilm viability for anidulafungin and LAmB on 96-well microtitre polystyrene plates and silicone discs. An intravenous catheter was implanted in New Zealand white rabbits. Infection was induced by locking the catheter for 48 h with the inoculum. The 48 h antifungal-lock treatment groups included control, 3.3 mg/mL anidulafungin and 5.5 mg/mL LAmB. Anidulafungin showed better in vitro activity than LAmB against C. parapsilosis growing in biofilm on silicone discs. MBIC90 of LAmB: CP12, >1024 mg/L; CP54, >1024 mg/L. MBIC90 of anidulafungin: CP12, 1 mg/L; CP54, 1 mg/L (P ≤ 0.05). Moreover, only anidulafungi...

Research paper thumbnail of Easily applicable modifications to electroporation conditions improve the transformation efficiency rates for rough morphotypes of fast-growing mycobacteria

Research paper thumbnail of Nano-engineering stable contact-based antimicrobials: Chemistry at the interface between nano-gold and bacteria

Colloids and Surfaces B: Biointerfaces

Research paper thumbnail of Phage-Encoded Endolysins

Antibiotics

Due to the global emergence of antibiotic resistance, there has been an increase in research surr... more Due to the global emergence of antibiotic resistance, there has been an increase in research surrounding endolysins as an alternative therapeutic. Endolysins are phage-encoded enzymes, utilized by mature phage virions to hydrolyze the cell wall from within. There is significant evidence that proves the ability of endolysins to degrade the peptidoglycan externally without the assistance of phage. Thus, their incorporation in therapeutic strategies has opened new options for therapeutic application against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology sectors. While endolysins show promising results within the laboratory, it is important to document their resistance, safety, and immunogenicity for in-vivo application. This review aims to provide new insights into the synergy between endolysins and antibiotics, as well as the formulation of endolysins. Thus, it provides crucial information for clinical trials involving en...

Research paper thumbnail of A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility

npj Biofilms and Microbiomes

Currently, three major circumstances threaten the management of bacterial infections: increasing ... more Currently, three major circumstances threaten the management of bacterial infections: increasing antimicrobial resistance, expansion of chronic biofilm-associated infections, and lack of an appropriate approach to treat them. To date, the development of accelerated drug susceptibility testing of biofilms and of new antibiofouling systems has not been achieved despite the availability of different methodologies. There is a need for easy-to-use methods of testing the antibiotic susceptibility of bacteria that form biofilms and for screening new possible antibiofilm strategies. Herein, we present a microfluidic platform with an integrated interdigitated sensor (BiofilmChip). This new device allows an irreversible and homogeneous attachment of bacterial cells of clinical origin, even directly from clinical specimens, and the biofilms grown can be monitored by confocal microscopy or electrical impedance spectroscopy. The device proved to be suitable to study polymicrobial communities, as...

Research paper thumbnail of Monitoring Gene Expression during a Galleria mellonella Bacterial Infection

Microorganisms

Galleria mellonella larvae are an alternative in vivo model that has been extensively used to stu... more Galleria mellonella larvae are an alternative in vivo model that has been extensively used to study the virulence and pathogenicity of different bacteria due to its practicality and lack of ethical constraints. However, the larvae possess intrinsic autofluorescence that obstructs the use of fluorescent proteins to study bacterial infections, hence better methodologies are needed. Here, we report the construction of a promoter probe vector with bioluminescence expression as well as the optimization of a total bacterial RNA extraction protocol to enhance the monitoring of in vivo infections. By employing the vector to construct different gene promoter fusions, variable gene expression levels were efficiently measured in G. mellonella larvae at various time points during the course of infection and without much manipulation of the larvae. Additionally, our optimized RNA extraction protocol facilitates the study of transcriptional gene levels during an in vivo infection. The proposed me...

Research paper thumbnail of Mycolicibacterium brumae is a Safe and Non-Toxic Immunomodulatory Agent for Cancer Treatment

Vaccines

Intravesical Mycobacterium bovis Bacillus Calmette–Guérin (BCG) immunotherapy remains the gold-st... more Intravesical Mycobacterium bovis Bacillus Calmette–Guérin (BCG) immunotherapy remains the gold-standard treatment for non-muscle-invasive bladder cancer patients, even though half of the patients develop adverse events to this therapy. On exploring BCG-alternative therapies, Mycolicibacterium brumae, a nontuberculous mycobacterium, has shown outstanding anti-tumor and immunomodulatory capabilities. As no infections due to M. brumae in humans, animals, or plants have been described, the safety and/or toxicity of this mycobacterium have not been previously addressed. In the present study, an analysis was made of M. brumae- and BCG-intravenously-infected severe combined immunodeficient (SCID) mice, M. brumae-intravesically-treated BALB/c mice, and intrahemacoelic-infected-Galleria mellonella larvae. Organs from infected mice and the hemolymph from larvae were processed to count bacterial burden. Blood samples from mice were also taken, and a wide range of hematological and biochemical ...

Research paper thumbnail of A clearing protocol for Galleria mellonella larvae: Visualization of internalized fluorescent nanoparticles

Research paper thumbnail of Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle

Virulence

Intracellular invasion is an advantageous mechanism used by pathogens to evade host defense and a... more Intracellular invasion is an advantageous mechanism used by pathogens to evade host defense and antimicrobial therapy. In patients, the intracellular microbial lifestyle can lead to infection persistence and recurrence, thus worsening outcomes. Lung infections caused by Pseudomonas aeruginosa, especially in cystic fibrosis (CF) patients, are often aggravated by intracellular invasion and persistence of the pathogen. Proliferation of the infectious species relies on a continuous deoxyribonucleotide (dNTP) supply, for which the ribonucleotide reductase enzyme (RNR) is the unique provider. The large genome plasticity of P. aeruginosa and its ability to rapidly adapt to different environments are challenges for studying the pathophysiology associated with this type of infection. Using different reference strains and clinical isolates of P. aeruginosa independently combined with alveolar (A549) and bronchial (16HBE14o-and CF-CFBE41o-) epithelial cells, we analyzed host-pathogen interactions and intracellular bacterial persistence with the aim of determining a cell type-directed infection promoted by the P. aeruginosa strains. The oscillations in cellular toxicity and oxygen consumption promoted by the intracellular persistence of the strains were also analyzed among the different infectious lung models. Significantly, we identified class II RNR as the enzyme that supplies dNTPs to intracellular P. aeruginosa. This discovery could contribute to the development of RNR-targeted strategies against the chronicity occurring in this type of lung infection. Overall our study demonstrates that the choice of bacterial strain is critical to properly study the type of infectious process with relevant translational outcomes.

Research paper thumbnail of Gradual adaptation of facultative anaerobic pathogens to microaerobic and anaerobic conditions

Research paper thumbnail of Mapping the Dielectric Constant of a Single Bacterial Cell at the Nanoscale with Scanning Dielectric Force Volume Microscopy

Nanoscale

Mapping the dielectric constant at the nanoscale of samples showing a complex topography, such as... more Mapping the dielectric constant at the nanoscale of samples showing a complex topography, such as non-planar nanocomposite materials or single cells, poses formidable challenges to existing nanoscale dielectric microscopy techniques....

Research paper thumbnail of Aerobic Vitamin B12 Biosynthesis Is Essential for Pseudomonas aeruginosa Class II Ribonucleotide Reductase Activity During Planktonic and Biofilm Growth

Frontiers in Microbiology

Pseudomonas aeruginosa is a major pathogenic bacterium in chronic infections and is a model organ... more Pseudomonas aeruginosa is a major pathogenic bacterium in chronic infections and is a model organism for studying biofilms. P. aeruginosa is considered an aerobic bacterium, but in the presence of nitrate, it also grows in anaerobic conditions. Oxygen diffusion through the biofilm generates metabolic and genetic diversity in P. aeruginosa growth, such as in ribonucleotide reductase activity. These essential enzymes are necessary for DNA synthesis and repair. Oxygen availability determines the activity of the three-ribonucleotide reductase (RNR) classes. Class II and III RNRs are active in the absence of oxygen; however, class II RNRs, which are important in P. aeruginosa biofilm growth, require a vitamin B 12 cofactor for their enzymatic activity. In this work, we elucidated the conditions in which class II RNRs are active due to vitamin B 12 concentration constraints (biosynthesis or environmental availability). We demonstrated that increased vitamin B 12 levels during aerobic, stationary and biofilm growth activate class II RNR activity. We also established that the cobN gene is essentially responsible for B 12 biosynthesis under planktonic and biofilm growth. Our results unravel the mechanisms of dNTP synthesis by P. aeruginosa during biofilm growth, which appear to depend on the bacterial strain (laboratory-type or clinical isolate).

Research paper thumbnail of High time resolution and high signal-to-noise monitoring of the bacterial growth kinetics in the presence of plasmonic nanoparticles

Journal of Nanobiotechnology

Background: Emerging concepts for designing innovative drugs (i.e., novel generations of antimicr... more Background: Emerging concepts for designing innovative drugs (i.e., novel generations of antimicrobials) frequently include nanostructures, new materials, and nanoparticles (NPs). Along with numerous advantages, NPs bring limitations, partly because they can limit the analytical techniques used for their biological and in vivo validation. From that standpoint, designing innovative drug delivery systems requires advancements in the methods used for their testing and investigations. Considering the well-known ability of resazurin-based methods for rapid detection of bacterial metabolisms with very high sensitivity, in this work we report a novel optimization for tracking bacterial growth kinetics in the presence of NPs with specific characteristics, such as specific optical properties. Results: Arginine-functionalized gold composite (HAp/Au/arginine) NPs, used as the NP model for validation of the method, possess plasmonic properties and are characterized by intensive absorption in the UV/vis region with a surface plasmon resonance maximum at 540 nm. Due to the specific optical properties, the NP absorption intensively interferes with the light absorption measured during the evaluation of bacterial growth (optical density; OD 600). The results confirm substantial nonspecific interference by NPs in the signal detected during a regular turbidity study used for tracking bacterial growth. Instead, during application of a resazurin-based method (Presto Blue), when a combination of absorption and fluorescence detection is applied, a substantial increase in the signal-to-noise ratio is obtained that leads to the improvement of the accuracy of the measurements as verified in three bacterial strains tested with different growth rates (E. coli, P. aeruginosa, and S. aureus). Conclusions: Here, we described a novel procedure that enables the kinetics of bacterial growth in the presence of NPs to be followed with high time resolution, high sensitivity, and without sampling during the kinetic study. We showed the applicability of the Presto Blue method for the case of HAp/Au/arginine NPs, which can be extended to various types of metallic NPs with similar characteristics. The method is a very easy, economical, and reliable option for testing NPs designed as novel antimicrobials.

Research paper thumbnail of New Water-Soluble Copper(II) Complexes with Morpholine-Thiosemicarbazone Hybrids: Insights into the Anticancer and Antibacterial Mode of Action

Journal of Medicinal Chemistry

Six morpholine-(iso)thiosemicarbazone hybrids HL 1 −HL 6 and their Cu(II) complexes with good-tom... more Six morpholine-(iso)thiosemicarbazone hybrids HL 1 −HL 6 and their Cu(II) complexes with good-tomoderate solubility and stability in water were synthesized and characterized. Cu(II) complexes [Cu(L 1−6)Cl] (1−6) formed weak dimeric associates in the solid state, which did not remain intact in solution as evidenced by ESI-MS. The lead proligands and Cu(II) complexes displayed higher antiproliferative activity in cancer cells than triapine. In addition, complexes 2−5 were found to specifically inhibit the growth of Gram-positive bacteria Staphylococcus aureus with MIC 50 values at 2−5 μg/mL. Insights into the processes controlling intracellular accumulation and mechanism of action were investigated for 2 and 5, including the role of ribonucleotide reductase (RNR) inhibition, endoplasmic reticulum stress induction, and regulation of other cancer signaling pathways. Their ability to moderately inhibit R2 RNR protein in the presence of dithiothreitol is likely related to Fe chelating properties of the proligands liberated upon reduction.

Research paper thumbnail of Pentafluorosulfanyl-containing Triclocarban Analogs with Potent Antimicrobial Activity

Molecules

Concerns have been raised about the long-term accumulating effects of triclocarban, a polychlorin... more Concerns have been raised about the long-term accumulating effects of triclocarban, a polychlorinated diarylurea widely used as an antibacterial soap additive, in the environment and in human beings. Indeed, the Food and Drug Administration has recently banned it from personal care products. Herein, we report the synthesis, antibacterial activity and cytotoxicity of novel N,N′-diarylureas as triclocarban analogs, designed by reducing one or more chlorine atoms of the former and/or replacing them by the novel pentafluorosulfanyl group, a new bioisostere of the trifluoromethyl group, with growing importance in drug discovery. Interestingly, some of these pentafluorosulfanyl-bearing ureas exhibited high potency, broad spectrum of antimicrobial activity against Gram-positive bacterial pathogens, and high selectivity index, while displaying a lower spontaneous mutation frequency than triclocarban. Some lines of evidence suggest a bactericidal mode of action for this family of compounds.

Research paper thumbnail of A single point mutation in class III ribonucleotide reductase promoter renders Pseudomonas aeruginosa PAO1 inefficient for anaerobic growth and infection

Scientific reports, Jan 17, 2017

Pseudomonas aeruginosa strain PAO1 has become the reference strain in many laboratories. One enzy... more Pseudomonas aeruginosa strain PAO1 has become the reference strain in many laboratories. One enzyme that is essential for its cell division is the ribonucleotide reductase (RNR) enzyme that supplies the deoxynucleotides required for DNA synthesis and repair. P. aeruginosa is one of the few microorganisms that encodes three different RNR classes (Ia, II and III) in its genome, enabling it to grow and adapt to diverse environmental conditions, including during infection. In this work, we demonstrate that a lack of RNR activity induces cell elongation in P. aeruginosa PAO1. Moreover, RNR gene expression during anaerobiosis differs among P. aeruginosa strains, with class III highly expressed in P. aeruginosa clinical isolates relative to the laboratory P. aeruginosa PAO1 strain. A single point mutation was identified in the P. aeruginosa PAO1 strain class III RNR promoter region that disrupts its anaerobic transcription by the Dnr regulator. An engineered strain that induces the class I...

Research paper thumbnail of High-dose daptomycin is effective as an antibiotic-lock therapy in a rabbit model of Staphylococcus epidermidis catheter-related infection

Antimicrobial agents and chemotherapy, Jan 20, 2017

Long-term catheter-related bloodstream infections (CRBSI) involving coagulase-negative Staphyloco... more Long-term catheter-related bloodstream infections (CRBSI) involving coagulase-negative Staphylococci are associated with poor patient outcomes, increased hospitalization and high treatment costs. The use of vancomycin-lock therapy has been an important step forward to treat these biofilms although failures appear in 20% of patients. In this study, we report that a high dose of daptomycin-lock therapy may offer a therapeutic advantage for these CRBSI in just 24 h of treatment.

Research paper thumbnail of Erratum to: Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons

Molecular neurobiology, Jan 5, 2017

The presentation Dr. José Manuel García-Aznar's name was incorrect. BGarcía-Aznar^should be his F... more The presentation Dr. José Manuel García-Aznar's name was incorrect. BGarcía-Aznar^should be his Family Name. Citation should be BGarcía-Aznar, JM^instead of BAznar, JMG^. Also the two affiliations below of Dr. Josep Samitier were missing.

Research paper thumbnail of Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons

Molecular neurobiology, Jan 22, 2017

The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amy... more The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrP(C)-overexpressing mice. In addition, α-synuclein binds strongly on PrP(C)-expressing cells, suggesting a role in modulating the effect of α-synuclein fibrils.

Research paper thumbnail of A single transcription factor behind all bacterial dNTP synthesis revealed as a novel antimicrobial target

Research paper thumbnail of Efficacy of anidulafungin in the treatment of experimental Candida parapsilosis catheter infection using an antifungal-lock technique

The Journal of antimicrobial chemotherapy, Oct 4, 2016

The effectiveness of anidulafungin versus liposomal amphotericin B (LAmB) for treating experiment... more The effectiveness of anidulafungin versus liposomal amphotericin B (LAmB) for treating experimental Candida parapsilosis catheter-related infection by an antifungal-lock technique was assessed. Two clinical strains of C. parapsilosis (CP12 and CP54) were studied. In vitro studies were used to determine the biofilm MICs (MBIC50 and MBIC90) by XTT reduction assay and LIVE/DEAD biofilm viability for anidulafungin and LAmB on 96-well microtitre polystyrene plates and silicone discs. An intravenous catheter was implanted in New Zealand white rabbits. Infection was induced by locking the catheter for 48 h with the inoculum. The 48 h antifungal-lock treatment groups included control, 3.3 mg/mL anidulafungin and 5.5 mg/mL LAmB. Anidulafungin showed better in vitro activity than LAmB against C. parapsilosis growing in biofilm on silicone discs. MBIC90 of LAmB: CP12, >1024 mg/L; CP54, >1024 mg/L. MBIC90 of anidulafungin: CP12, 1 mg/L; CP54, 1 mg/L (P ≤ 0.05). Moreover, only anidulafungi...