Eduardo Peña - Academia.edu (original) (raw)
Papers by Eduardo Peña
Reactive Oxygen Species (ROS) in Living Cells
Reactive oxygen species (ROSs) play important physiological and physiopathological roles in the c... more Reactive oxygen species (ROSs) play important physiological and physiopathological roles in the cardiovascular system. An imbalance between ROS and antioxidants, termed oxidative stress, can contribute to endothelial dysfunction and cardiovascular remodeling. ROSs have been demonstrated to be increased and to regulate the following main pulmonary vasculature changes that occur at high altitude (hypobaric hypoxia): hypoxic pulmonary vasoconstriction (HPV), pulmonary hypertension, right ventricular hypertrophy (RVH), and ultimately, cardiac failure. Thus, ROS increases are a public health concern for the increasing number of people living or working at high altitudes. ROSs trigger the activation of different metabolic signaling pathways that alter the activity of redox-sensitive transcription factors and translational signals. Consequently, we provide a comprehensive review of the literature on the main factors, sources, and mechanisms of action of ROS and their effects on the cardiovascular system under hypobaric hypoxic conditions. Although ROS generation is a normal physiological activity, under hypobaric hypoxia (high altitude) conditions, ROS levels are elevated. The principal sources of ROS are nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-4 (NOX4) in the vascular system and NOX2 in cardiac tissue. Thus, the information presented in this review provides a broad view of the relationship between ROS and hypoxia.
Antioxidants, 2022
Several diseases associated with high-altitude exposure affect unacclimated individuals. These di... more Several diseases associated with high-altitude exposure affect unacclimated individuals. These diseases include acute mountain sickness (AMS), high-altitude cerebral edema (HACE), high-altitude pulmonary edema (HAPE), chronic mountain sickness (CMS), and, notably, high-altitude pulmonary hypertension (HAPH), which can eventually lead to right ventricle hypertrophy and heart failure. The development of these pathologies involves different molecules and molecular pathways that might be related to oxidative stress. Studies have shown that acute, intermittent, and chronic exposure to hypobaric hypoxia induce oxidative stress, causing alterations to molecular pathways and cellular components (lipids, proteins, and DNA). Therefore, the aim of this review is to discuss the oxidative molecules and pathways involved in the development of high-altitude diseases. In summary, all high-altitude pathologies are related to oxidative stress, as indicated by increases in the malondialdehyde (MDA) bi...
Pulmonary Circulation, 2020
There is growing evidence that exposure to hypoxia, regardless of the source, elicits several met... more There is growing evidence that exposure to hypoxia, regardless of the source, elicits several metabolic responses in individuals. These responses are constitutive and are usually observed under hypoxia but vary according to the type of exposure. The aim of this review was to describe the involvement of obesity and lipid metabolism in the development of high-altitude pulmonary hypertension and in the development of acute mountain sickness under chronic intermittent hypoxia. Overweight or obesity, which are common in individuals with long-term chronic intermittent hypoxia exposure (high-altitude miners, shift workers, and soldiers), are thought to play a major role in the development of acute mountain sickness and high-altitude pulmonary hypertension. This association may be rooted in the interactions between obesity-related metabolic and physical alterations, such as increased waist circumference and neck circumference, among others, which lead to critical ventilation impairments; th...
Pulmonary Circulation, 2020
In some subjects, high-altitude hypobaric hypoxia leads to high-altitude pulmonary hypertension. ... more In some subjects, high-altitude hypobaric hypoxia leads to high-altitude pulmonary hypertension. The threshold for the diagnosis of high-altitude pulmonary hypertension is a mean pulmonary artery pressure of 30 mmHg, even though for general pulmonary hypertension is ≥25 mmHg. High-altitude pulmonary hypertension has been associated with high hematocrit findings (chronic mountain sickness), and although these are two separate entities, they have a synergistic effect that should be considered. In recent years, a new condition associated with high altitude was described in South America named long-term chronic intermittent hypoxia and has appeared in individuals who commute to work at high altitude but live and rest at sea level. In this review, we discuss the initial epidemiological pattern from the early studies done in Chile, the clinical presentation and possible molecular mechanism and a discussion of the potential management of this condition.
Frontiers in Physiology, 2020
Background: Both chronic hypoxia (CH) and long-term chronic intermittent hypoxia (CIH) exposure l... more Background: Both chronic hypoxia (CH) and long-term chronic intermittent hypoxia (CIH) exposure lead to right ventricular hypertrophy (RVH). Weight loss is an effective intervention to improve cardiac function and energy metabolism in cardiac hypertrophy. Likewise, caloric restriction (CR) also plays an important role in this cardioprotection through AMPK activation. We aimed to determine the influence of body weight (BW) on RVH, AMPK and related variables by comparing rats exposed to both hypoxic conditions. Methods: Sixty male adult rats were separated into two groups (n = 30 per group) according to their previous diet: a caloric restriction (CR) group and an ad libitum (AL) group. Rats in both groups were randomly assigned to 3 groups: a normoxic group (NX, n = 10), a CIH group (2 days hypoxia/2 days normoxia; n = 10) and a CH group (n = 10). The CR group was previously fed 10 g daily, and the other was fed ad libitum. Rats were exposed to simulated hypobaric hypoxia in a hypobaric chamber set to 428 Torr (the equivalent pressure to that at an altitude of 4,600 m above sea level) for 30 days. Measurements included body weight; hematocrit; serum insulin; glycemia; the degree of RVH (Fulton's index and histology); and AMPK, mTOR, and PP2C expression levels in the right ventricle determined by western blotting. Results: A lower degree of RVH, higher AMPK activation, and no activation of mTOR were found in the CR groups exposed to hypobaric hypoxia compared to the AL groups (p < 0.05). Additionally, decreased glycemia and serum insulin levels were observed. Interestingly, PP2C expression showed an increase in the AL groups but not in the CR groups (p < 0.05).
Frontiers in Physiology, 2019
Background: Prolonged exposure to altitude-associated chronic hypoxia (CH) may cause high-altitud... more Background: Prolonged exposure to altitude-associated chronic hypoxia (CH) may cause high-altitude pulmonary hypertension (HAPH). Chronic intermittent hypobaric hypoxia (CIH) occurs in individuals who commute between sea level and high altitude. CIH is associated with repetitive acute hypoxic acclimatization and conveys the long-term risk of HAPH. As nitric oxide (NO) regulates pulmonary vascular tone and asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, we investigated whether ADMA concentration at sea level predicts HAPH among Chilean frontiers personnel exposed to 6 months of CIH. Methods: In this prospective study, 123 healthy army draftees were subjected to CIH (5 days at 3,550 m, 2 days at sea level) for 6 months. In 100 study participants with complete data, ADMA, symmetric dimethylarginine (SDMA), L-arginine, arterial oxygen saturation (SaO 2), systemic blood pressure, and hematocrit were assessed at months 0 (sea level), 1, 4, and 6. Acclimatization to altitude was determined using the Lake Louise Score (LLS) and the presence of acute mountain sickness (AMS). Echocardiography was performed after 6 months of CIH in 43 individuals with either good (n = 23) or poor (n = 20) acclimatization. Results: SaO 2 acutely decreased at altitude and plateaued at 90% thereafter. ADMA increased and SDMA decreased during the study course. The incidence of AMS and the LLS was high after the first ascent (53 and 3.1 ± 2.4) and at 1 month of CIH (47 and 3.0 ± 2.6), but decreased to 20 and 1.4 ± 2.0 at month 6 (both p < 0.001). Eighteen participants (42%) showed a mean pulmonary arterial pressure (mPAP) >25 mm Hg, out of which 9 (21%) were classified as HAPH (mPAP ≥ 30 mm Hg). ADMA at sea level was significantly associated with mPAP at high altitude in month 6 (R = 0.413; p = 0.007). In ROC analysis, a cutoff for baseline ADMA of 0.665 μmol/L was determined to predict HAPH (mPAP > 30 mm Hg) with a sensitivity of 100% and a specificity of 63.6%. Siques et al.
Frontiers in physiology, 2018
An increasing number of people are living or working at high altitudes (hypobaric hypoxia) and th... more An increasing number of people are living or working at high altitudes (hypobaric hypoxia) and therefore suffering several physiological, biochemical, and molecular changes. Pulmonary vasculature is one of the main and first responses to hypoxia. These responses imply hypoxic pulmonary vasoconstriction (HPV), remodeling, and eventually pulmonary hypertension (PH). These events occur according to the type and extension of the exposure. There is also increasing evidence that these changes in the pulmonary vascular bed could be mainly attributed to a homeostatic imbalance as a result of increased levels of reactive oxygen species (ROS). The increase in ROS production during hypobaric hypoxia has been attributed to an enhanced activity and expression of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), though there is some dispute about which subunit is involved. This enzymatic complex may be directly induced by hypoxia-inducible factor-1α (HIF-1α). ROS has been found...
Pulmonary Medicine, 2016
Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pul... more Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pulmonary hypertension (HAPH). Asymmetric dimethylarginine (ADMA), a NO synthase (NOS) inhibitor, may contribute to HAPH. This study assessed changes in the ADMA/NO pathway and the underlying mechanisms in rat lungs following exposure to CIH or CH simulated in a hypobaric chamber at 428 Torr. Twenty-four adult Wistar rats were randomly assigned to three groups: CIH2x2 (2 days of hypoxia/2 days of normoxia), CH, and NX (permanent normoxia), for 30 days. All analyses were performed in whole lung tissue. L-Arginine and ADMA were analyzed using LC-MS/MS. Under both hypoxic conditions right ventricular hypertrophy was observed (p<0.01) and endothelial NOS mRNA increased (p<0.001), but the phosphorylated/nonphosphorylated vasodilator-stimulated phosphoprotein (VASP) ratio was unchanged. ADMA increased (p<0.001), whereas dimethylarginine dimethylaminohydrolase (DDAH) activity decreased on...
International Journal of Molecular Sciences
Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pre... more Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pressure of gases, particularly oxygen (PO2), decreases. This condition triggers several physiological and molecular responses. One of the principal responses is pulmonary vascular contraction, which seeks to optimize gas exchange under this condition, known as hypoxic pulmonary vasoconstriction (HPV); however, when this physiological response is exacerbated, it contributes to the development of high-altitude pulmonary hypertension (HAPH). Increased levels of zinc (Zn2+) and oxidative stress (known as the “ROS hypothesis”) have been demonstrated in the vasoconstriction process. Therefore, the aim of this review is to determine the relationship between molecular pathways associated with altered Zn2+ levels and oxidative stress in HPV in hypobaric hypoxic conditions. The results indicate an increased level of Zn2+, which is related to increasing mitochondrial ROS (mtROS), alterations in nitri...
International Journal of Molecular Sciences
One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right... more One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right ventricular hypertrophy (RVH). One particular type of exposure is long-term chronic intermittent hypobaric hypoxia (CIH); the molecular alterations in RVH in this particular condition are less known. Studies show an important role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-induced oxidative stress and protein kinase activation in different models of cardiac hypertrophy. The aim was to determine the oxidative level, NADPH oxidase expression and MAPK activation in rats with RVH induced by CIH. Male Wistar rats were randomly subjected to CIH (2 days hypoxia/2 days normoxia; n = 10) and normoxia (NX; n = 10) for 30 days. Hypoxia was simulated with a hypobaric chamber. Measurements in the RV included the following: hypertrophy, Nox2, Nox4, p22phox, LOX-1 and HIF-1α expression, lipid peroxidation and H2O2 concentration, and p38α and Akt activation. All CIH rats dev...
International Journal of Molecular Sciences
High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in o... more High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1β, IL-6, TNF-α and NF-kB) and hypox...
An increasing number of people are living or working at high altitudes (hypobaric hypoxia) and th... more An increasing number of people are living or working at high altitudes (hypobaric hypoxia) and therefore suffering several physiological, biochemical, and molecular changes. Pulmonary vasculature is one of the main and first responses to hypoxia. These responses imply hypoxic pulmonary vasoconstriction (HPV), remodeling, and eventually pulmonary hypertension (PH). These events occur according to the type and extension of the exposure. There is also increasing evidence that these changes in the pulmonary vascular bed could be mainly attributed to a homeostatic imbalance as a result of increased levels of reactive oxygen species (ROS). The increase in ROS production during hypobaric hypoxia has been attributed to an enhanced activity and expression of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), though there is some dispute about which subunit is involved. This enzymatic complex may be directly induced by hypoxia-inducible factor-1α (HIF-1α). ROS has been found to be related to several pathways, cells, enzymes, and molecules in hypoxic pulmonary vasculature responses, from HPV to inflammation, and structural changes, such as remodeling and, ultimately, PH. Therefore, we performed a comprehensive review of the current evidence on the role of ROS in the development of pulmonary vasculature changes under hypoxic conditions, with a focus on hypobaric hypoxia. This review provides information supporting the role of oxidative stress (mainly ROS) in the pulmonary vasculature's responses under hypobaric hypoxia and depicting possible future therapeutics or research targets. NADPH oxidase-produced oxidative stress is highlighted as a major source of ROS. Moreover, new molecules, such as asymmetric dimethylarginine, and critical inflammatory cells as fibroblasts, could be also involved. Several controversies remain regarding the role of ROS and the mechanisms involved in hypoxic responses that need to be elucidated.
Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pul... more Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pulmonary hypertension (HAPH). Asymmetric dimethylarginine (ADMA), a NO synthase (NOS) inhibitor, may contribute to HAPH. This study assessed changes in the ADMA/NO pathway and the underlying mechanisms in rat lungs following exposure to CIH or CH simulated in a hypobaric chamber at 428 Torr. Twenty-four adult Wistar rats were randomly assigned to three groups: CIH2x2 (2 days of hypoxia/2 days of normoxia), CH, and NX (permanent normoxia), for 30 days. All analyses were performed in whole lung tissue. L-Arginine and ADMA were analyzed using LC-MS/MS. Under both hypoxic conditions right ventricular hypertrophy was observed ( < 0.01) and endothelial NOS mRNA increased ( < 0.001), but the phosphorylated/nonphosphorylated vasodilator-stimulated phosphoprotein (VASP) ratio was unchanged. ADMA increased ( < 0.001), whereas dimethylarginine dimethylaminohydrolase (DDAH) activity decreased only under CH ( < 0.05). Although arginase activity increased ( < 0.001) and L-arginine exhibited no changes, the L-arginine/ADMA ratio decreased significantly ( < 0.001). Moreover, NOX4 expression increased only under CH ( < 0.01), but malondialdehyde (MDA) increased (up to 2-fold) equally in CIH2x2 and CH ( < 0.001). Our results suggest that ADMA and oxidative stress likely reduce NO bioavailability under altitude hypoxia, which implies greater pulmonary vascular reactivity and tone, despite the more subdued effects observed under CIH.
Reactive Oxygen Species (ROS) in Living Cells
Reactive oxygen species (ROSs) play important physiological and physiopathological roles in the c... more Reactive oxygen species (ROSs) play important physiological and physiopathological roles in the cardiovascular system. An imbalance between ROS and antioxidants, termed oxidative stress, can contribute to endothelial dysfunction and cardiovascular remodeling. ROSs have been demonstrated to be increased and to regulate the following main pulmonary vasculature changes that occur at high altitude (hypobaric hypoxia): hypoxic pulmonary vasoconstriction (HPV), pulmonary hypertension, right ventricular hypertrophy (RVH), and ultimately, cardiac failure. Thus, ROS increases are a public health concern for the increasing number of people living or working at high altitudes. ROSs trigger the activation of different metabolic signaling pathways that alter the activity of redox-sensitive transcription factors and translational signals. Consequently, we provide a comprehensive review of the literature on the main factors, sources, and mechanisms of action of ROS and their effects on the cardiovascular system under hypobaric hypoxic conditions. Although ROS generation is a normal physiological activity, under hypobaric hypoxia (high altitude) conditions, ROS levels are elevated. The principal sources of ROS are nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-4 (NOX4) in the vascular system and NOX2 in cardiac tissue. Thus, the information presented in this review provides a broad view of the relationship between ROS and hypoxia.
Antioxidants, 2022
Several diseases associated with high-altitude exposure affect unacclimated individuals. These di... more Several diseases associated with high-altitude exposure affect unacclimated individuals. These diseases include acute mountain sickness (AMS), high-altitude cerebral edema (HACE), high-altitude pulmonary edema (HAPE), chronic mountain sickness (CMS), and, notably, high-altitude pulmonary hypertension (HAPH), which can eventually lead to right ventricle hypertrophy and heart failure. The development of these pathologies involves different molecules and molecular pathways that might be related to oxidative stress. Studies have shown that acute, intermittent, and chronic exposure to hypobaric hypoxia induce oxidative stress, causing alterations to molecular pathways and cellular components (lipids, proteins, and DNA). Therefore, the aim of this review is to discuss the oxidative molecules and pathways involved in the development of high-altitude diseases. In summary, all high-altitude pathologies are related to oxidative stress, as indicated by increases in the malondialdehyde (MDA) bi...
Pulmonary Circulation, 2020
There is growing evidence that exposure to hypoxia, regardless of the source, elicits several met... more There is growing evidence that exposure to hypoxia, regardless of the source, elicits several metabolic responses in individuals. These responses are constitutive and are usually observed under hypoxia but vary according to the type of exposure. The aim of this review was to describe the involvement of obesity and lipid metabolism in the development of high-altitude pulmonary hypertension and in the development of acute mountain sickness under chronic intermittent hypoxia. Overweight or obesity, which are common in individuals with long-term chronic intermittent hypoxia exposure (high-altitude miners, shift workers, and soldiers), are thought to play a major role in the development of acute mountain sickness and high-altitude pulmonary hypertension. This association may be rooted in the interactions between obesity-related metabolic and physical alterations, such as increased waist circumference and neck circumference, among others, which lead to critical ventilation impairments; th...
Pulmonary Circulation, 2020
In some subjects, high-altitude hypobaric hypoxia leads to high-altitude pulmonary hypertension. ... more In some subjects, high-altitude hypobaric hypoxia leads to high-altitude pulmonary hypertension. The threshold for the diagnosis of high-altitude pulmonary hypertension is a mean pulmonary artery pressure of 30 mmHg, even though for general pulmonary hypertension is ≥25 mmHg. High-altitude pulmonary hypertension has been associated with high hematocrit findings (chronic mountain sickness), and although these are two separate entities, they have a synergistic effect that should be considered. In recent years, a new condition associated with high altitude was described in South America named long-term chronic intermittent hypoxia and has appeared in individuals who commute to work at high altitude but live and rest at sea level. In this review, we discuss the initial epidemiological pattern from the early studies done in Chile, the clinical presentation and possible molecular mechanism and a discussion of the potential management of this condition.
Frontiers in Physiology, 2020
Background: Both chronic hypoxia (CH) and long-term chronic intermittent hypoxia (CIH) exposure l... more Background: Both chronic hypoxia (CH) and long-term chronic intermittent hypoxia (CIH) exposure lead to right ventricular hypertrophy (RVH). Weight loss is an effective intervention to improve cardiac function and energy metabolism in cardiac hypertrophy. Likewise, caloric restriction (CR) also plays an important role in this cardioprotection through AMPK activation. We aimed to determine the influence of body weight (BW) on RVH, AMPK and related variables by comparing rats exposed to both hypoxic conditions. Methods: Sixty male adult rats were separated into two groups (n = 30 per group) according to their previous diet: a caloric restriction (CR) group and an ad libitum (AL) group. Rats in both groups were randomly assigned to 3 groups: a normoxic group (NX, n = 10), a CIH group (2 days hypoxia/2 days normoxia; n = 10) and a CH group (n = 10). The CR group was previously fed 10 g daily, and the other was fed ad libitum. Rats were exposed to simulated hypobaric hypoxia in a hypobaric chamber set to 428 Torr (the equivalent pressure to that at an altitude of 4,600 m above sea level) for 30 days. Measurements included body weight; hematocrit; serum insulin; glycemia; the degree of RVH (Fulton's index and histology); and AMPK, mTOR, and PP2C expression levels in the right ventricle determined by western blotting. Results: A lower degree of RVH, higher AMPK activation, and no activation of mTOR were found in the CR groups exposed to hypobaric hypoxia compared to the AL groups (p < 0.05). Additionally, decreased glycemia and serum insulin levels were observed. Interestingly, PP2C expression showed an increase in the AL groups but not in the CR groups (p < 0.05).
Frontiers in Physiology, 2019
Background: Prolonged exposure to altitude-associated chronic hypoxia (CH) may cause high-altitud... more Background: Prolonged exposure to altitude-associated chronic hypoxia (CH) may cause high-altitude pulmonary hypertension (HAPH). Chronic intermittent hypobaric hypoxia (CIH) occurs in individuals who commute between sea level and high altitude. CIH is associated with repetitive acute hypoxic acclimatization and conveys the long-term risk of HAPH. As nitric oxide (NO) regulates pulmonary vascular tone and asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, we investigated whether ADMA concentration at sea level predicts HAPH among Chilean frontiers personnel exposed to 6 months of CIH. Methods: In this prospective study, 123 healthy army draftees were subjected to CIH (5 days at 3,550 m, 2 days at sea level) for 6 months. In 100 study participants with complete data, ADMA, symmetric dimethylarginine (SDMA), L-arginine, arterial oxygen saturation (SaO 2), systemic blood pressure, and hematocrit were assessed at months 0 (sea level), 1, 4, and 6. Acclimatization to altitude was determined using the Lake Louise Score (LLS) and the presence of acute mountain sickness (AMS). Echocardiography was performed after 6 months of CIH in 43 individuals with either good (n = 23) or poor (n = 20) acclimatization. Results: SaO 2 acutely decreased at altitude and plateaued at 90% thereafter. ADMA increased and SDMA decreased during the study course. The incidence of AMS and the LLS was high after the first ascent (53 and 3.1 ± 2.4) and at 1 month of CIH (47 and 3.0 ± 2.6), but decreased to 20 and 1.4 ± 2.0 at month 6 (both p < 0.001). Eighteen participants (42%) showed a mean pulmonary arterial pressure (mPAP) >25 mm Hg, out of which 9 (21%) were classified as HAPH (mPAP ≥ 30 mm Hg). ADMA at sea level was significantly associated with mPAP at high altitude in month 6 (R = 0.413; p = 0.007). In ROC analysis, a cutoff for baseline ADMA of 0.665 μmol/L was determined to predict HAPH (mPAP > 30 mm Hg) with a sensitivity of 100% and a specificity of 63.6%. Siques et al.
Frontiers in physiology, 2018
An increasing number of people are living or working at high altitudes (hypobaric hypoxia) and th... more An increasing number of people are living or working at high altitudes (hypobaric hypoxia) and therefore suffering several physiological, biochemical, and molecular changes. Pulmonary vasculature is one of the main and first responses to hypoxia. These responses imply hypoxic pulmonary vasoconstriction (HPV), remodeling, and eventually pulmonary hypertension (PH). These events occur according to the type and extension of the exposure. There is also increasing evidence that these changes in the pulmonary vascular bed could be mainly attributed to a homeostatic imbalance as a result of increased levels of reactive oxygen species (ROS). The increase in ROS production during hypobaric hypoxia has been attributed to an enhanced activity and expression of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), though there is some dispute about which subunit is involved. This enzymatic complex may be directly induced by hypoxia-inducible factor-1α (HIF-1α). ROS has been found...
Pulmonary Medicine, 2016
Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pul... more Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pulmonary hypertension (HAPH). Asymmetric dimethylarginine (ADMA), a NO synthase (NOS) inhibitor, may contribute to HAPH. This study assessed changes in the ADMA/NO pathway and the underlying mechanisms in rat lungs following exposure to CIH or CH simulated in a hypobaric chamber at 428 Torr. Twenty-four adult Wistar rats were randomly assigned to three groups: CIH2x2 (2 days of hypoxia/2 days of normoxia), CH, and NX (permanent normoxia), for 30 days. All analyses were performed in whole lung tissue. L-Arginine and ADMA were analyzed using LC-MS/MS. Under both hypoxic conditions right ventricular hypertrophy was observed (p<0.01) and endothelial NOS mRNA increased (p<0.001), but the phosphorylated/nonphosphorylated vasodilator-stimulated phosphoprotein (VASP) ratio was unchanged. ADMA increased (p<0.001), whereas dimethylarginine dimethylaminohydrolase (DDAH) activity decreased on...
International Journal of Molecular Sciences
Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pre... more Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pressure of gases, particularly oxygen (PO2), decreases. This condition triggers several physiological and molecular responses. One of the principal responses is pulmonary vascular contraction, which seeks to optimize gas exchange under this condition, known as hypoxic pulmonary vasoconstriction (HPV); however, when this physiological response is exacerbated, it contributes to the development of high-altitude pulmonary hypertension (HAPH). Increased levels of zinc (Zn2+) and oxidative stress (known as the “ROS hypothesis”) have been demonstrated in the vasoconstriction process. Therefore, the aim of this review is to determine the relationship between molecular pathways associated with altered Zn2+ levels and oxidative stress in HPV in hypobaric hypoxic conditions. The results indicate an increased level of Zn2+, which is related to increasing mitochondrial ROS (mtROS), alterations in nitri...
International Journal of Molecular Sciences
One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right... more One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right ventricular hypertrophy (RVH). One particular type of exposure is long-term chronic intermittent hypobaric hypoxia (CIH); the molecular alterations in RVH in this particular condition are less known. Studies show an important role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-induced oxidative stress and protein kinase activation in different models of cardiac hypertrophy. The aim was to determine the oxidative level, NADPH oxidase expression and MAPK activation in rats with RVH induced by CIH. Male Wistar rats were randomly subjected to CIH (2 days hypoxia/2 days normoxia; n = 10) and normoxia (NX; n = 10) for 30 days. Hypoxia was simulated with a hypobaric chamber. Measurements in the RV included the following: hypertrophy, Nox2, Nox4, p22phox, LOX-1 and HIF-1α expression, lipid peroxidation and H2O2 concentration, and p38α and Akt activation. All CIH rats dev...
International Journal of Molecular Sciences
High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in o... more High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1β, IL-6, TNF-α and NF-kB) and hypox...
An increasing number of people are living or working at high altitudes (hypobaric hypoxia) and th... more An increasing number of people are living or working at high altitudes (hypobaric hypoxia) and therefore suffering several physiological, biochemical, and molecular changes. Pulmonary vasculature is one of the main and first responses to hypoxia. These responses imply hypoxic pulmonary vasoconstriction (HPV), remodeling, and eventually pulmonary hypertension (PH). These events occur according to the type and extension of the exposure. There is also increasing evidence that these changes in the pulmonary vascular bed could be mainly attributed to a homeostatic imbalance as a result of increased levels of reactive oxygen species (ROS). The increase in ROS production during hypobaric hypoxia has been attributed to an enhanced activity and expression of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), though there is some dispute about which subunit is involved. This enzymatic complex may be directly induced by hypoxia-inducible factor-1α (HIF-1α). ROS has been found to be related to several pathways, cells, enzymes, and molecules in hypoxic pulmonary vasculature responses, from HPV to inflammation, and structural changes, such as remodeling and, ultimately, PH. Therefore, we performed a comprehensive review of the current evidence on the role of ROS in the development of pulmonary vasculature changes under hypoxic conditions, with a focus on hypobaric hypoxia. This review provides information supporting the role of oxidative stress (mainly ROS) in the pulmonary vasculature's responses under hypobaric hypoxia and depicting possible future therapeutics or research targets. NADPH oxidase-produced oxidative stress is highlighted as a major source of ROS. Moreover, new molecules, such as asymmetric dimethylarginine, and critical inflammatory cells as fibroblasts, could be also involved. Several controversies remain regarding the role of ROS and the mechanisms involved in hypoxic responses that need to be elucidated.
Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pul... more Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pulmonary hypertension (HAPH). Asymmetric dimethylarginine (ADMA), a NO synthase (NOS) inhibitor, may contribute to HAPH. This study assessed changes in the ADMA/NO pathway and the underlying mechanisms in rat lungs following exposure to CIH or CH simulated in a hypobaric chamber at 428 Torr. Twenty-four adult Wistar rats were randomly assigned to three groups: CIH2x2 (2 days of hypoxia/2 days of normoxia), CH, and NX (permanent normoxia), for 30 days. All analyses were performed in whole lung tissue. L-Arginine and ADMA were analyzed using LC-MS/MS. Under both hypoxic conditions right ventricular hypertrophy was observed ( < 0.01) and endothelial NOS mRNA increased ( < 0.001), but the phosphorylated/nonphosphorylated vasodilator-stimulated phosphoprotein (VASP) ratio was unchanged. ADMA increased ( < 0.001), whereas dimethylarginine dimethylaminohydrolase (DDAH) activity decreased only under CH ( < 0.05). Although arginase activity increased ( < 0.001) and L-arginine exhibited no changes, the L-arginine/ADMA ratio decreased significantly ( < 0.001). Moreover, NOX4 expression increased only under CH ( < 0.01), but malondialdehyde (MDA) increased (up to 2-fold) equally in CIH2x2 and CH ( < 0.001). Our results suggest that ADMA and oxidative stress likely reduce NO bioavailability under altitude hypoxia, which implies greater pulmonary vascular reactivity and tone, despite the more subdued effects observed under CIH.