Elaheh Esfahanian - Academia.edu (original) (raw)

Papers by Elaheh Esfahanian

Research paper thumbnail of Defining drought in the context of stream health

Ecological Engineering, Sep 1, 2016

Droughts affect many sectors, such as agriculture, economic, social, human health, and ecosystems... more Droughts affect many sectors, such as agriculture, economic, social, human health, and ecosystems. Many drought indices have been developed; yet, none of them quantifies the impacts of drought on stream health. The purpose of this study is to define a new drought index capable of assessing fish vulnerability. To accomplish this, a hydrological model, called the Soil and Water Assessment Tool (SWAT), and the Regional-scale Habitat Suitability model were integrated in order to understand the state of drought within 13,831 stream segments within the Saginaw Bay Watershed. The ReliefF algorithm was used as the variable selection method, and partial least squared regression was used to develop two sets of predictor models capable of determining current and future drought severities. Forty-seven different climate scenarios were used to investigate drought model predictability of future climate scenarios. The results indicated that the best drought model has a high capability for predicting future drought conditions with R 2 values ranging from 0.86 to 0.89. In general, the majority of reaches (94%) will experience higher drought probability under future climate scenarios compared to current conditions. The

Research paper thumbnail of Construction of A New Dose–Response Model for Staphylococcus aureus Considering Growth and Decay Kinetics on Skin

Pathogens, Nov 21, 2019

In order to determine the relationship between an exposure dose of Staphylococcus aureus (S. aure... more In order to determine the relationship between an exposure dose of Staphylococcus aureus (S. aureus) on the skin and the risk of infection, an understanding of the bacterial growth and decay kinetics is very important. Models are essential tools for understanding and predicting bacterial kinetics and are necessary to predict the dose of organisms post-exposure that results in a skin infection. One of the challenges in modeling bacterial kinetics is the estimation of model parameters, which can be addressed using an inverse problem approach. The objective of this study is to construct a microbial kinetic model of S. aureus on human skin and use the model to predict concentrations of S. aureus that result in human infection. In order to model the growth and decay of S. aureus on skin, a Gompertz inactivation model was coupled with a Gompertz growth model. A series of analyses, including ordinary least squares regression, scaled sensitivity coefficient analysis, residual analysis, and parameter correlation analysis were conducted to estimate the parameters and to describe the model uncertainty. Based on these analyses, the proposed model parameters were estimated with high accuracy. The model was then used to develop a new dose-response model for S. aureus using the exponential dose-response model. The new S. aureus model has an optimized k parameter equivalent to 8.05 × 10 −8 with 95 th percentile confidence intervals between 6.46 × 10 −8 and 1.00 × 10 −7 .

Research paper thumbnail of Development of a meteorological, agricultural, stream health, and hydrological (MASH) comprehensive drought index

Research paper thumbnail of Defining drought in the context of stream health

Ecological Engineering, 2016

Research paper thumbnail of Comparison of the photocatalytic efficacy and environmental impact of CdS, ZnFe2O4, and NiFe2O4 under visible light irradiation

Three photocatalysts (CdS, ZnFe2O4, and NiFe2O4) were synthesized and their ability to photodegra... more Three photocatalysts (CdS, ZnFe2O4, and NiFe2O4) were synthesized and their ability to photodegrade methylene blue (MB) was evaluated. MB was degraded by both spinel photocatalysts under visible light at room temperature, although their efficacy was less than that for CdS. The photocatalytic efficacies of NiFe2O4 were observed to be much greater than that for ZnFe2O4. All the synthesized nanoparticles absorbed visible light, while CdS had a larger absorption range within the visible light spectra and the most porous surface. Photo-deactivation was observed during the study, which could be due to the chemical adsorption of the degraded products on the catalyst surface. The factors that affected MB removal efficacy include the absorption range of photocatalysts, initial MB concentrations, amount of photocatalysts added, and photoreactor conditions. Life cycle analysis was used to compare the preparation methods of the photocatalysts in terms of energy consumption and environmental imp...

Research paper thumbnail of Construction of A New Dose–Response Model for Staphylococcus aureus Considering Growth and Decay Kinetics on Skin

Pathogens, Nov 21, 2019

In order to determine the relationship between an exposure dose of Staphylococcus aureus (S. aure... more In order to determine the relationship between an exposure dose of Staphylococcus aureus (S. aureus) on the skin and the risk of infection, an understanding of the bacterial growth and decay kinetics is very important. Models are essential tools for understanding and predicting bacterial kinetics and are necessary to predict the dose of organisms post-exposure that results in a skin infection. One of the challenges in modeling bacterial kinetics is the estimation of model parameters, which can be addressed using an inverse problem approach. The objective of this study is to construct a microbial kinetic model of S. aureus on human skin and use the model to predict concentrations of S. aureus that result in human infection. In order to model the growth and decay of S. aureus on skin, a Gompertz inactivation model was coupled with a Gompertz growth model. A series of analyses, including ordinary least squares regression, scaled sensitivity coefficient analysis, residual analysis, and parameter correlation analysis were conducted to estimate the parameters and to describe the model uncertainty. Based on these analyses, the proposed model parameters were estimated with high accuracy. The model was then used to develop a new dose-response model for S. aureus using the exponential dose–response model. The new S. aureus model has an optimized k parameter equivalent to 8.05 × 10−8 with 95th percentile confidence intervals between 6.46 × 10−8 and 1.00 × 10−7.

Research paper thumbnail of Quantitation of Risk Reduction of E. coli Transmission after Using Antimicrobial Hand Soap

Pathogens

Handwashing with soap is an effective and economical means to reduce the likelihood of Escherichi... more Handwashing with soap is an effective and economical means to reduce the likelihood of Escherichia coli infection from indirect contact with contaminated surfaces during food preparation. The purpose of this study was to conduct a quantitative microbial risk assessment (QMRA) to evaluate the risk of infection from indirect contact with fomites contaminated with E. coli after hand washing with antimicrobial hand soaps. A Monte Carlo simulation was done with a total of 10,000 simulations to compare the effectiveness of two antimicrobial and one control (non-antimicrobial) bar soaps in reducing the exposure and infection risk compared to no hand washing. The numbers of E. coli on several fomites commonly found in household kitchens, as well as the transfer rates between fomites and onto fingertips, were collected from the literature and experimental data. The sponsor company provided the E. coli survival on hands after washing with antimicrobial and control soaps. A number of scenarios...

Research paper thumbnail of Development and evaluation of a comprehensive drought index

Journal of environmental management, Jan 28, 2016

Droughts are known as the world's costliest natural disasters impacting a variety of sectors.... more Droughts are known as the world's costliest natural disasters impacting a variety of sectors. Despite their wide range of impacts, no universal drought definition has been defined. The goal of this study is to define a universal drought index that considers drought impacts on meteorological, agricultural, hydrological, and stream health categories. Additionally, predictive drought models are developed to capture both categorical (meteorological, hydrological, and agricultural) and overall impacts of drought. In order to achieve these goals, thirteen commonly used drought indices were aggregated to develop a universal drought index named MASH. The thirteen drought indices consist of four drought indices from each meteorological, hydrological, and agricultural categories, and one from the stream health category. Cluster analysis was performed to find the three closest indices in each category. Then the closest drought indices were averaged in each category to create the categorica...

Research paper thumbnail of Ecohydrological modeling for large-scale environmental impact assessment

The Science of the total environment, Jan 17, 2015

Ecohydrological models are frequently used to assess the biological integrity of unsampled stream... more Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (c...

Research paper thumbnail of Ecohydrological modeling for large-scale environmental impact assessment

The Science of the total environment, Jan 17, 2015

Ecohydrological models are frequently used to assess the biological integrity of unsampled stream... more Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (c...

Research paper thumbnail of Ecohydrological modeling for large-scale environmental impact assessment

The Science of the total environment, Jan 17, 2015

Ecohydrological models are frequently used to assess the biological integrity of unsampled stream... more Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (c...

Research paper thumbnail of Defining drought in the context of stream health

Droughts affect many sectors, such as agriculture, economic, social, human health, and ecosystems... more Droughts affect many sectors, such as agriculture, economic, social, human health, and ecosystems. Many drought indices have been developed; yet, none of them quantifies the impacts of drought on stream health. The purpose of this study is to define a new drought index capable of assessing fish vulnerability. To accomplish this, a hydrological model, called the Soil and Water Assessment Tool (SWAT), and the Regional-scale Habitat Suitability model were integrated in order to understand the state of drought within 13,831 stream segments within the Saginaw Bay Watershed. The ReliefF algorithm was used as the variable selection method, and partial least squared regression was used to develop two sets of pre-dictor models capable of determining current and future drought severities. Forty-seven different climate scenarios were used to investigate drought model predictability of future climate scenarios. The results indicated that the best drought model has a high capability for predicting future drought conditions with R 2 values ranging from 0.86 to 0.89. In general, the majority of reaches (94%) will experience higher drought probability under future climate scenarios compared to current conditions. The procedure introduced in this study is transferable to other watersheds with regional standards for environmental flow to measure the impacts of drought on stream health.

Research paper thumbnail of Defining drought in the context of stream health

Ecological Engineering, Sep 1, 2016

Droughts affect many sectors, such as agriculture, economic, social, human health, and ecosystems... more Droughts affect many sectors, such as agriculture, economic, social, human health, and ecosystems. Many drought indices have been developed; yet, none of them quantifies the impacts of drought on stream health. The purpose of this study is to define a new drought index capable of assessing fish vulnerability. To accomplish this, a hydrological model, called the Soil and Water Assessment Tool (SWAT), and the Regional-scale Habitat Suitability model were integrated in order to understand the state of drought within 13,831 stream segments within the Saginaw Bay Watershed. The ReliefF algorithm was used as the variable selection method, and partial least squared regression was used to develop two sets of predictor models capable of determining current and future drought severities. Forty-seven different climate scenarios were used to investigate drought model predictability of future climate scenarios. The results indicated that the best drought model has a high capability for predicting future drought conditions with R 2 values ranging from 0.86 to 0.89. In general, the majority of reaches (94%) will experience higher drought probability under future climate scenarios compared to current conditions. The

Research paper thumbnail of Construction of A New Dose–Response Model for Staphylococcus aureus Considering Growth and Decay Kinetics on Skin

Pathogens, Nov 21, 2019

In order to determine the relationship between an exposure dose of Staphylococcus aureus (S. aure... more In order to determine the relationship between an exposure dose of Staphylococcus aureus (S. aureus) on the skin and the risk of infection, an understanding of the bacterial growth and decay kinetics is very important. Models are essential tools for understanding and predicting bacterial kinetics and are necessary to predict the dose of organisms post-exposure that results in a skin infection. One of the challenges in modeling bacterial kinetics is the estimation of model parameters, which can be addressed using an inverse problem approach. The objective of this study is to construct a microbial kinetic model of S. aureus on human skin and use the model to predict concentrations of S. aureus that result in human infection. In order to model the growth and decay of S. aureus on skin, a Gompertz inactivation model was coupled with a Gompertz growth model. A series of analyses, including ordinary least squares regression, scaled sensitivity coefficient analysis, residual analysis, and parameter correlation analysis were conducted to estimate the parameters and to describe the model uncertainty. Based on these analyses, the proposed model parameters were estimated with high accuracy. The model was then used to develop a new dose-response model for S. aureus using the exponential dose-response model. The new S. aureus model has an optimized k parameter equivalent to 8.05 × 10 −8 with 95 th percentile confidence intervals between 6.46 × 10 −8 and 1.00 × 10 −7 .

Research paper thumbnail of Development of a meteorological, agricultural, stream health, and hydrological (MASH) comprehensive drought index

Research paper thumbnail of Defining drought in the context of stream health

Ecological Engineering, 2016

Research paper thumbnail of Comparison of the photocatalytic efficacy and environmental impact of CdS, ZnFe2O4, and NiFe2O4 under visible light irradiation

Three photocatalysts (CdS, ZnFe2O4, and NiFe2O4) were synthesized and their ability to photodegra... more Three photocatalysts (CdS, ZnFe2O4, and NiFe2O4) were synthesized and their ability to photodegrade methylene blue (MB) was evaluated. MB was degraded by both spinel photocatalysts under visible light at room temperature, although their efficacy was less than that for CdS. The photocatalytic efficacies of NiFe2O4 were observed to be much greater than that for ZnFe2O4. All the synthesized nanoparticles absorbed visible light, while CdS had a larger absorption range within the visible light spectra and the most porous surface. Photo-deactivation was observed during the study, which could be due to the chemical adsorption of the degraded products on the catalyst surface. The factors that affected MB removal efficacy include the absorption range of photocatalysts, initial MB concentrations, amount of photocatalysts added, and photoreactor conditions. Life cycle analysis was used to compare the preparation methods of the photocatalysts in terms of energy consumption and environmental imp...

Research paper thumbnail of Construction of A New Dose–Response Model for Staphylococcus aureus Considering Growth and Decay Kinetics on Skin

Pathogens, Nov 21, 2019

In order to determine the relationship between an exposure dose of Staphylococcus aureus (S. aure... more In order to determine the relationship between an exposure dose of Staphylococcus aureus (S. aureus) on the skin and the risk of infection, an understanding of the bacterial growth and decay kinetics is very important. Models are essential tools for understanding and predicting bacterial kinetics and are necessary to predict the dose of organisms post-exposure that results in a skin infection. One of the challenges in modeling bacterial kinetics is the estimation of model parameters, which can be addressed using an inverse problem approach. The objective of this study is to construct a microbial kinetic model of S. aureus on human skin and use the model to predict concentrations of S. aureus that result in human infection. In order to model the growth and decay of S. aureus on skin, a Gompertz inactivation model was coupled with a Gompertz growth model. A series of analyses, including ordinary least squares regression, scaled sensitivity coefficient analysis, residual analysis, and parameter correlation analysis were conducted to estimate the parameters and to describe the model uncertainty. Based on these analyses, the proposed model parameters were estimated with high accuracy. The model was then used to develop a new dose-response model for S. aureus using the exponential dose–response model. The new S. aureus model has an optimized k parameter equivalent to 8.05 × 10−8 with 95th percentile confidence intervals between 6.46 × 10−8 and 1.00 × 10−7.

Research paper thumbnail of Quantitation of Risk Reduction of E. coli Transmission after Using Antimicrobial Hand Soap

Pathogens

Handwashing with soap is an effective and economical means to reduce the likelihood of Escherichi... more Handwashing with soap is an effective and economical means to reduce the likelihood of Escherichia coli infection from indirect contact with contaminated surfaces during food preparation. The purpose of this study was to conduct a quantitative microbial risk assessment (QMRA) to evaluate the risk of infection from indirect contact with fomites contaminated with E. coli after hand washing with antimicrobial hand soaps. A Monte Carlo simulation was done with a total of 10,000 simulations to compare the effectiveness of two antimicrobial and one control (non-antimicrobial) bar soaps in reducing the exposure and infection risk compared to no hand washing. The numbers of E. coli on several fomites commonly found in household kitchens, as well as the transfer rates between fomites and onto fingertips, were collected from the literature and experimental data. The sponsor company provided the E. coli survival on hands after washing with antimicrobial and control soaps. A number of scenarios...

Research paper thumbnail of Development and evaluation of a comprehensive drought index

Journal of environmental management, Jan 28, 2016

Droughts are known as the world's costliest natural disasters impacting a variety of sectors.... more Droughts are known as the world's costliest natural disasters impacting a variety of sectors. Despite their wide range of impacts, no universal drought definition has been defined. The goal of this study is to define a universal drought index that considers drought impacts on meteorological, agricultural, hydrological, and stream health categories. Additionally, predictive drought models are developed to capture both categorical (meteorological, hydrological, and agricultural) and overall impacts of drought. In order to achieve these goals, thirteen commonly used drought indices were aggregated to develop a universal drought index named MASH. The thirteen drought indices consist of four drought indices from each meteorological, hydrological, and agricultural categories, and one from the stream health category. Cluster analysis was performed to find the three closest indices in each category. Then the closest drought indices were averaged in each category to create the categorica...

Research paper thumbnail of Ecohydrological modeling for large-scale environmental impact assessment

The Science of the total environment, Jan 17, 2015

Ecohydrological models are frequently used to assess the biological integrity of unsampled stream... more Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (c...

Research paper thumbnail of Ecohydrological modeling for large-scale environmental impact assessment

The Science of the total environment, Jan 17, 2015

Ecohydrological models are frequently used to assess the biological integrity of unsampled stream... more Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (c...

Research paper thumbnail of Ecohydrological modeling for large-scale environmental impact assessment

The Science of the total environment, Jan 17, 2015

Ecohydrological models are frequently used to assess the biological integrity of unsampled stream... more Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (c...

Research paper thumbnail of Defining drought in the context of stream health

Droughts affect many sectors, such as agriculture, economic, social, human health, and ecosystems... more Droughts affect many sectors, such as agriculture, economic, social, human health, and ecosystems. Many drought indices have been developed; yet, none of them quantifies the impacts of drought on stream health. The purpose of this study is to define a new drought index capable of assessing fish vulnerability. To accomplish this, a hydrological model, called the Soil and Water Assessment Tool (SWAT), and the Regional-scale Habitat Suitability model were integrated in order to understand the state of drought within 13,831 stream segments within the Saginaw Bay Watershed. The ReliefF algorithm was used as the variable selection method, and partial least squared regression was used to develop two sets of pre-dictor models capable of determining current and future drought severities. Forty-seven different climate scenarios were used to investigate drought model predictability of future climate scenarios. The results indicated that the best drought model has a high capability for predicting future drought conditions with R 2 values ranging from 0.86 to 0.89. In general, the majority of reaches (94%) will experience higher drought probability under future climate scenarios compared to current conditions. The procedure introduced in this study is transferable to other watersheds with regional standards for environmental flow to measure the impacts of drought on stream health.