Eneko Azaceta - Academia.edu (original) (raw)

Papers by Eneko Azaceta

Research paper thumbnail of Synthesis and characterization of poly(1-vinyl-3-alkylimidazolium) iodide polymers for quasi-solid electrolytes in dye sensitized solar cells

Electrochimica Acta, 2010

A series of new poly(1-vinyl-3-alkylimidazolium) iodide polymers with different alkyl derivatives... more A series of new poly(1-vinyl-3-alkylimidazolium) iodide polymers with different alkyl derivatives such as methyl, propyl and perflurodecyl have been synthesized. The alkyl substituent influenced some properties such as solubility, thermal stability, glass transition and crystallinity of the polymers. For instance, polymer having the propyl substituent was soluble in solvents of intermediate polarity such as acetonitrile, chloroform and THF, the one with the methyl substituent was only soluble in very polar solvents such as water and methanol and the fluorinated polymer was only soluble in DMF. The alkyl substituent also influenced the thermal stability in the order methyl > propyl > perflurodecyl and all the polymers thermally decomposed between 250 and 400 • C in nitrogen. The poly(1-vinyl-3-alkyl-imidazolium) iodide polymers having propyl and methyl substituents were amorphous polymers showing a glass transition temperature of 43 and 21 • C, respectively; and perflurodecyl polymers were semi-crystalline with a Tm at 153 • C and a Tg at 20 • C, as indicated by differential scanning calorimetry.

Research paper thumbnail of Ni/NiO Based 3D Core-Shell Foam Anode for Lithium Ion Batteries

Electrochimica Acta, 2015

ABSTRACT An innovative route to obtain Ni/NiO core-shell foam-based anodes for lithium-ion batter... more ABSTRACT An innovative route to obtain Ni/NiO core-shell foam-based anodes for lithium-ion batteries is presented. Commercial Ni foams are conformally coated with NiO by ionic liquid-based electrodeposition. The electrochemical behavior of the resulting Ni/NiO electrodes in half coin cells with lithium counter electrode is investigated. The results are qualitatively correlated to the microstructural properties, including effects of the thermal annealing at 500 °C, of the NiO shell. The formation a NiO sub-layer by the thermal oxidation of the Ni foam seems to play a crucial role in the enhanced performance of the annealed Ni/NiO anodes, which exhibit a reversible discharge capacity around 0.8 mAh/cm2. Furthermore, the Ni/NiO core-shell foam-based anodes are evaluated in full coin Li-ion cells with high voltage LiMn0.8Fe0.2PO4 cathode. Promising cyclability is reached in NiO-LMFP coin cells under cycling at 0.4C.

Research paper thumbnail of Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires

Physical Chemistry Chemical Physics

Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of ... more Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of CdSe have been prepared, using CuSCN as hole transporting material. Samples with significantly different photovoltaic performance have been analyzed and a general model of their behavior was obtained. We have used impedance spectroscopy to model the device discriminating the series resistance, the role of the hole conducting material CuSCN, and the interface process. Correlating the impedance analysis with the microstructural properties of the solar cell interfaces, a good description of the solar cell performance is obtained. The use of thick CdSe layers leads to high recombination resistances, increasing the open circuit voltage of the devices. However, there is an increase of the internal recombination in thick light absorbing layers that also inhibit a good penetration of CuSCN, reducing the photocurrent. The model will play an important role on the optimization of these devices. Thi...

Research paper thumbnail of Electrochemical reduction of O2 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid containing Zn2+ cations: deposition of non-polar oriented ZnO nanocrystalline films

Physical Chemistry Chemical Physics, 2011

The influence of the Zn(2+) concentration and temperature on the electrochemical reduction of O(2... more The influence of the Zn(2+) concentration and temperature on the electrochemical reduction of O(2) in a solution of zinc bis(trifluoromethanesulfonyl)imide (Zn(TFSI)(2)) salt in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR(14)TFSI) ionic liquid is presented. ZnO nanocrystalline films were then electrodeposited, under enhanced O(2) reduction, at temperatures in the 75-150 °C range. Their morphology, chemical composition, structural and optical properties were analyzed. In contrast to the polar-oriented ZnO usually obtained from aqueous and conventional solvent based electrolytes, nanocrystalline films oriented along non-polar directions, (11 ̅10) and (11 ̅20), were obtained from this ionic liquid electrolyte. A significant content of carbon was detected in the films, pointing to the active participation and crucial effect of pyrrolidinium cation (and/or byproducts) during the electrodeposition. The films showed semiconducting behavior with an optical gap between 3.43 and 3.53 eV as measured by optical transmittance. Their room temperature photoluminescence spectra exhibited two different bands centered at ∼3.4 and ∼2.2 eV. The intensity ratio between both bands was found to depend on the deposition temperature. This work demonstrates the great potential of ionic liquids based electrolytes for the electrodeposition of ZnO nanocrystalline thin films with innovative microstructural and optoelectronic properties.

Research paper thumbnail of Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires

Physical Chemistry Chemical Physics, 2011

Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of ... more Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of CdSe have been prepared, using CuSCN as hole transporting material. Samples with significantly different photovoltaic performance have been analyzed and a general model of their behavior was obtained. We have used impedance spectroscopy to model the device discriminating the series resistance, the role of the hole conducting material CuSCN, and the interface process. Correlating the impedance analysis with the microstructural properties of the solar cell interfaces, a good description of the solar cell performance is obtained. The use of thick CdSe layers leads to high recombination resistances, increasing the open circuit voltage of the devices. However, there is an increase of the internal recombination in thick light absorbing layers that also inhibit a good penetration of CuSCN, reducing the photocurrent. The model will play an important role on the optimization of these devices. This analysis could have important implications for the modeling and optimization of all-solid devices using a sensitizing configuration.

Research paper thumbnail of A Sulfide/Polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells

Journal of the American Chemical Society, 2011

Further development of quantum dotsensitized solar cells (QDSCs) will require long-term stability... more Further development of quantum dotsensitized solar cells (QDSCs) will require long-term stability in addition to the continuous increase of photovoltaic (PV) conversion efficiency achieved in the last years. We report a robust S 2− /S n 2− electrolyte that has been specifically designed for compatibility with CdSe quantum dots in sensitized solar cells. The new pyrrolidinium ionic liquid reaches 1.86% efficiency and a short-circuit current close to 14 mA·cm −2 under air-mass 1.5 global illumination and improves the device lifetime with good photoanode stability over 240 h. PV characterization showed that the solar cell limitations relate to poor catalysis of regeneration at the counter electrode and high recombination. Further improvement of these factors in the robust electrolyte configuration may thus have a significant impact for advancing the state-of-the-art in QDSCs.

Research paper thumbnail of NiO cathodic electrochemical deposition from an aprotic ionic liquid: Building metal oxide n–p heterojunctions

Electrochimica Acta, 2012

ABSTRACT NiO thin films have been successfully deposited by cathodic electrochemical deposition i... more ABSTRACT NiO thin films have been successfully deposited by cathodic electrochemical deposition in N-butyl-N-methylpyrrolidinium bis(trifloromethanesulfonyl)imide room temperature ionic liquid (IL), giving an unambiguous proof of concept of the metal oxide electrodeposition in aprotic ILs without metal hydroxide formation as an intermediate phase. The electrochemical phenomena involved in the deposition process have been analyzed by cyclic voltammetry, pointing out that the electrochemical reduction of Ni2+ may be quenched in oxygenated IL electrolytes. The physico-chemical properties of the obtained NiO thin films have been characterized by electron scanning and atomic force microscopies, X-ray diffraction and Fourier transform infrared X-ray photo-electron spectroscopies. By taking advantage of the present electrodeposition route, ZnO/NiO heterostructures have been built. The current density-voltage characteristic of the resulting device exhibits clear rectifying behavior, with a rectification factor of 3 × 103 at V = ±1 V. This result anticipates a significant potential of the present electrochemical route in the metal oxide electronics.

Research paper thumbnail of Shedding Light on Solar Cells with Synchrotron Radiation

X-ray absorption and photoelectron spectroscopy with synchrotron radiation are used to systematic... more X-ray absorption and photoelectron spectroscopy with synchrotron radiation are used to systematically determine the energy levels of molecules for dye-sensitized solar cells (including porphyrins and phthalocyanines [1-3]). N 1s absorption spectra combined with ...

Research paper thumbnail of Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells

Physical Chemistry Chemical Physics, 2011

1-Dimensional nanostructured ZnO electrodes have been demonstrated to be potentially interesting ... more 1-Dimensional nanostructured ZnO electrodes have been demonstrated to be potentially interesting for their application in solar cells. Herein, we present a novel procedure to control the ZnO nanowire optoelectronic properties by means of surface modification. The nanowire surface is functionalized with ZnO nanoparticles in order to provide an improved contact to the photoactive P3HT:PCBM film that enhances the overall power conversion efficiency of the resulting solar cell. Charge extraction and transient photovoltage measurements have been used to successfully demonstrate that the surface modified nanostructured electrode contributes in enhancing the exciton dissociating ratio and in enlarging the charge lifetime as a consequence of a reduced charge recombination. Under AM1.5G illumination, all these factors contribute to a considerably large increase in photocurrent yielding unusually high conversion efficiencies over 4% and external quantum efficiencies of 87% at 550 nm for commercially available P3HT:PCBM based solar cells. The same approach might be equally used for polymeric materials under development to overcome the record reported efficiencies.

Research paper thumbnail of Synthesis and characterization of poly(1-vinyl-3-alkylimidazolium) iodide polymers for quasi-solid electrolytes in dye sensitized solar cells

Electrochimica Acta, 2010

A series of new poly(1-vinyl-3-alkylimidazolium) iodide polymers with different alkyl derivatives... more A series of new poly(1-vinyl-3-alkylimidazolium) iodide polymers with different alkyl derivatives such as methyl, propyl and perflurodecyl have been synthesized. The alkyl substituent influenced some properties such as solubility, thermal stability, glass transition and crystallinity of the polymers. For instance, polymer having the propyl substituent was soluble in solvents of intermediate polarity such as acetonitrile, chloroform and THF, the one with the methyl substituent was only soluble in very polar solvents such as water and methanol and the fluorinated polymer was only soluble in DMF. The alkyl substituent also influenced the thermal stability in the order methyl > propyl > perflurodecyl and all the polymers thermally decomposed between 250 and 400 • C in nitrogen. The poly(1-vinyl-3-alkyl-imidazolium) iodide polymers having propyl and methyl substituents were amorphous polymers showing a glass transition temperature of 43 and 21 • C, respectively; and perflurodecyl polymers were semi-crystalline with a Tm at 153 • C and a Tg at 20 • C, as indicated by differential scanning calorimetry.

Research paper thumbnail of Ni/NiO Based 3D Core-Shell Foam Anode for Lithium Ion Batteries

Electrochimica Acta, 2015

ABSTRACT An innovative route to obtain Ni/NiO core-shell foam-based anodes for lithium-ion batter... more ABSTRACT An innovative route to obtain Ni/NiO core-shell foam-based anodes for lithium-ion batteries is presented. Commercial Ni foams are conformally coated with NiO by ionic liquid-based electrodeposition. The electrochemical behavior of the resulting Ni/NiO electrodes in half coin cells with lithium counter electrode is investigated. The results are qualitatively correlated to the microstructural properties, including effects of the thermal annealing at 500 °C, of the NiO shell. The formation a NiO sub-layer by the thermal oxidation of the Ni foam seems to play a crucial role in the enhanced performance of the annealed Ni/NiO anodes, which exhibit a reversible discharge capacity around 0.8 mAh/cm2. Furthermore, the Ni/NiO core-shell foam-based anodes are evaluated in full coin Li-ion cells with high voltage LiMn0.8Fe0.2PO4 cathode. Promising cyclability is reached in NiO-LMFP coin cells under cycling at 0.4C.

Research paper thumbnail of Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires

Physical Chemistry Chemical Physics

Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of ... more Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of CdSe have been prepared, using CuSCN as hole transporting material. Samples with significantly different photovoltaic performance have been analyzed and a general model of their behavior was obtained. We have used impedance spectroscopy to model the device discriminating the series resistance, the role of the hole conducting material CuSCN, and the interface process. Correlating the impedance analysis with the microstructural properties of the solar cell interfaces, a good description of the solar cell performance is obtained. The use of thick CdSe layers leads to high recombination resistances, increasing the open circuit voltage of the devices. However, there is an increase of the internal recombination in thick light absorbing layers that also inhibit a good penetration of CuSCN, reducing the photocurrent. The model will play an important role on the optimization of these devices. Thi...

Research paper thumbnail of Electrochemical reduction of O2 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid containing Zn2+ cations: deposition of non-polar oriented ZnO nanocrystalline films

Physical Chemistry Chemical Physics, 2011

The influence of the Zn(2+) concentration and temperature on the electrochemical reduction of O(2... more The influence of the Zn(2+) concentration and temperature on the electrochemical reduction of O(2) in a solution of zinc bis(trifluoromethanesulfonyl)imide (Zn(TFSI)(2)) salt in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR(14)TFSI) ionic liquid is presented. ZnO nanocrystalline films were then electrodeposited, under enhanced O(2) reduction, at temperatures in the 75-150 °C range. Their morphology, chemical composition, structural and optical properties were analyzed. In contrast to the polar-oriented ZnO usually obtained from aqueous and conventional solvent based electrolytes, nanocrystalline films oriented along non-polar directions, (11 ̅10) and (11 ̅20), were obtained from this ionic liquid electrolyte. A significant content of carbon was detected in the films, pointing to the active participation and crucial effect of pyrrolidinium cation (and/or byproducts) during the electrodeposition. The films showed semiconducting behavior with an optical gap between 3.43 and 3.53 eV as measured by optical transmittance. Their room temperature photoluminescence spectra exhibited two different bands centered at ∼3.4 and ∼2.2 eV. The intensity ratio between both bands was found to depend on the deposition temperature. This work demonstrates the great potential of ionic liquids based electrolytes for the electrodeposition of ZnO nanocrystalline thin films with innovative microstructural and optoelectronic properties.

Research paper thumbnail of Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires

Physical Chemistry Chemical Physics, 2011

Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of ... more Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of CdSe have been prepared, using CuSCN as hole transporting material. Samples with significantly different photovoltaic performance have been analyzed and a general model of their behavior was obtained. We have used impedance spectroscopy to model the device discriminating the series resistance, the role of the hole conducting material CuSCN, and the interface process. Correlating the impedance analysis with the microstructural properties of the solar cell interfaces, a good description of the solar cell performance is obtained. The use of thick CdSe layers leads to high recombination resistances, increasing the open circuit voltage of the devices. However, there is an increase of the internal recombination in thick light absorbing layers that also inhibit a good penetration of CuSCN, reducing the photocurrent. The model will play an important role on the optimization of these devices. This analysis could have important implications for the modeling and optimization of all-solid devices using a sensitizing configuration.

Research paper thumbnail of A Sulfide/Polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells

Journal of the American Chemical Society, 2011

Further development of quantum dotsensitized solar cells (QDSCs) will require long-term stability... more Further development of quantum dotsensitized solar cells (QDSCs) will require long-term stability in addition to the continuous increase of photovoltaic (PV) conversion efficiency achieved in the last years. We report a robust S 2− /S n 2− electrolyte that has been specifically designed for compatibility with CdSe quantum dots in sensitized solar cells. The new pyrrolidinium ionic liquid reaches 1.86% efficiency and a short-circuit current close to 14 mA·cm −2 under air-mass 1.5 global illumination and improves the device lifetime with good photoanode stability over 240 h. PV characterization showed that the solar cell limitations relate to poor catalysis of regeneration at the counter electrode and high recombination. Further improvement of these factors in the robust electrolyte configuration may thus have a significant impact for advancing the state-of-the-art in QDSCs.

Research paper thumbnail of NiO cathodic electrochemical deposition from an aprotic ionic liquid: Building metal oxide n–p heterojunctions

Electrochimica Acta, 2012

ABSTRACT NiO thin films have been successfully deposited by cathodic electrochemical deposition i... more ABSTRACT NiO thin films have been successfully deposited by cathodic electrochemical deposition in N-butyl-N-methylpyrrolidinium bis(trifloromethanesulfonyl)imide room temperature ionic liquid (IL), giving an unambiguous proof of concept of the metal oxide electrodeposition in aprotic ILs without metal hydroxide formation as an intermediate phase. The electrochemical phenomena involved in the deposition process have been analyzed by cyclic voltammetry, pointing out that the electrochemical reduction of Ni2+ may be quenched in oxygenated IL electrolytes. The physico-chemical properties of the obtained NiO thin films have been characterized by electron scanning and atomic force microscopies, X-ray diffraction and Fourier transform infrared X-ray photo-electron spectroscopies. By taking advantage of the present electrodeposition route, ZnO/NiO heterostructures have been built. The current density-voltage characteristic of the resulting device exhibits clear rectifying behavior, with a rectification factor of 3 × 103 at V = ±1 V. This result anticipates a significant potential of the present electrochemical route in the metal oxide electronics.

Research paper thumbnail of Shedding Light on Solar Cells with Synchrotron Radiation

X-ray absorption and photoelectron spectroscopy with synchrotron radiation are used to systematic... more X-ray absorption and photoelectron spectroscopy with synchrotron radiation are used to systematically determine the energy levels of molecules for dye-sensitized solar cells (including porphyrins and phthalocyanines [1-3]). N 1s absorption spectra combined with ...

Research paper thumbnail of Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells

Physical Chemistry Chemical Physics, 2011

1-Dimensional nanostructured ZnO electrodes have been demonstrated to be potentially interesting ... more 1-Dimensional nanostructured ZnO electrodes have been demonstrated to be potentially interesting for their application in solar cells. Herein, we present a novel procedure to control the ZnO nanowire optoelectronic properties by means of surface modification. The nanowire surface is functionalized with ZnO nanoparticles in order to provide an improved contact to the photoactive P3HT:PCBM film that enhances the overall power conversion efficiency of the resulting solar cell. Charge extraction and transient photovoltage measurements have been used to successfully demonstrate that the surface modified nanostructured electrode contributes in enhancing the exciton dissociating ratio and in enlarging the charge lifetime as a consequence of a reduced charge recombination. Under AM1.5G illumination, all these factors contribute to a considerably large increase in photocurrent yielding unusually high conversion efficiencies over 4% and external quantum efficiencies of 87% at 550 nm for commercially available P3HT:PCBM based solar cells. The same approach might be equally used for polymeric materials under development to overcome the record reported efficiencies.