Eric Eisenstat - Academia.edu (original) (raw)
Papers by Eric Eisenstat
SSRN Electronic Journal, 2000
SSRN Electronic Journal, 2000
SSRN Electronic Journal, 2000
This paper discusses estimation of US inflation volatility using time varying parameter models, i... more This paper discusses estimation of US inflation volatility using time varying parameter models, in particular whether it should be modelled as a stationary or random walk stochastic process. Specifying inflation volatility as an unbounded process, as implied by the random walk, conflicts with priors beliefs, yet a stationary process cannot capture the low frequency behaviour commonly observed in estimates of volatility. We therefore propose an alternative model with a change-point process in the volatility that allows for switches between stationary models to capture changes in the level and dynamics over the past forty years. To accommodate the stationarity restriction, we develop a new representation that is equivalent to our model but is computationally more efficient. All models produce effectively identical estimates of volatility, but the change-point model provides more information on the level and persistence of volatility and the probabilities of changes. For example, we find a few well defined switches in the volatility process and, interestingly, these switches line up well with economic slowdowns or changes of the Federal Reserve Chair. Moreover, a decomposition of inflation shocks into permanent and transitory components shows that a spike in volatility in the late 2000s was entirely on the transitory side and a characterized by a rise above its long run mean level during a period of higher persistence.
SSRN Electronic Journal, 2000
We consider an adaptive importance sampling approach to estimating the marginal likelihood, a qua... more We consider an adaptive importance sampling approach to estimating the marginal likelihood, a quantity that is fundamental in Bayesian model comparison and Bayesian model averaging. This approach is motivated by the difficulty of obtaining an accurate estimate through existing algorithms that use Markov chain Monte Carlo (MCMC) draws, where the draws are typically costly to obtain and highly correlated in high-dimensional settings. In contrast, we use the cross-entropy (CE) method, a versatile adaptive Monte Carlo algorithm originally developed for rare-event simulation. The main advantage of the importance sampling approach is that random samples can be obtained from some convenient density with little additional costs. As we are generating independent draws instead of correlated MCMC draws, the increase in simulation effort is much smaller should one wish to reduce the numerical standard error of the estimator. Moreover, the importance density derived via the CE method is grounded in information theory, and therefore, is in a well-defined sense optimal. We demonstrate the utility of the proposed approach by two empirical applications involving women's labor market participation and U.S. macroeconomic time series. In both applications the proposed CE method compares favorably to existing estimators.
SSRN Electronic Journal, 2000
This article develops a new econometric methodology for performing stochastic model specification... more This article develops a new econometric methodology for performing stochastic model specification search (SMSS) in the vast model space of time-varying parameter VARs with stochastic volatility and correlated state transitions. This is motivated by the concern of over-fitting and the typically imprecise inference in these highly parameterized models. For each VAR coefficient, this new method automatically decides whether it is constant or time-varying. Moreover, it can be used to shrink an otherwise unrestricted time-varying parameter VAR to a stationary VAR, thus providing an easy way to (probabilistically) impose stationarity in time-varying parameter models. We demonstrate the effectiveness of the approach with a topical application, where we investigate the dynamic effects of structural shocks in government spending on U.S. taxes and GDP during a period of very low interest rates.
SSRN Electronic Journal, 2000
SSRN Electronic Journal, 2000
SSRN Electronic Journal, 2000
This paper discusses estimation of US inflation volatility using time varying parameter models, i... more This paper discusses estimation of US inflation volatility using time varying parameter models, in particular whether it should be modelled as a stationary or random walk stochastic process. Specifying inflation volatility as an unbounded process, as implied by the random walk, conflicts with priors beliefs, yet a stationary process cannot capture the low frequency behaviour commonly observed in estimates of volatility. We therefore propose an alternative model with a change-point process in the volatility that allows for switches between stationary models to capture changes in the level and dynamics over the past forty years. To accommodate the stationarity restriction, we develop a new representation that is equivalent to our model but is computationally more efficient. All models produce effectively identical estimates of volatility, but the change-point model provides more information on the level and persistence of volatility and the probabilities of changes. For example, we find a few well defined switches in the volatility process and, interestingly, these switches line up well with economic slowdowns or changes of the Federal Reserve Chair. Moreover, a decomposition of inflation shocks into permanent and transitory components shows that a spike in volatility in the late 2000s was entirely on the transitory side and a characterized by a rise above its long run mean level during a period of higher persistence.
SSRN Electronic Journal, 2000
We consider an adaptive importance sampling approach to estimating the marginal likelihood, a qua... more We consider an adaptive importance sampling approach to estimating the marginal likelihood, a quantity that is fundamental in Bayesian model comparison and Bayesian model averaging. This approach is motivated by the difficulty of obtaining an accurate estimate through existing algorithms that use Markov chain Monte Carlo (MCMC) draws, where the draws are typically costly to obtain and highly correlated in high-dimensional settings. In contrast, we use the cross-entropy (CE) method, a versatile adaptive Monte Carlo algorithm originally developed for rare-event simulation. The main advantage of the importance sampling approach is that random samples can be obtained from some convenient density with little additional costs. As we are generating independent draws instead of correlated MCMC draws, the increase in simulation effort is much smaller should one wish to reduce the numerical standard error of the estimator. Moreover, the importance density derived via the CE method is grounded in information theory, and therefore, is in a well-defined sense optimal. We demonstrate the utility of the proposed approach by two empirical applications involving women's labor market participation and U.S. macroeconomic time series. In both applications the proposed CE method compares favorably to existing estimators.
SSRN Electronic Journal, 2000
This article develops a new econometric methodology for performing stochastic model specification... more This article develops a new econometric methodology for performing stochastic model specification search (SMSS) in the vast model space of time-varying parameter VARs with stochastic volatility and correlated state transitions. This is motivated by the concern of over-fitting and the typically imprecise inference in these highly parameterized models. For each VAR coefficient, this new method automatically decides whether it is constant or time-varying. Moreover, it can be used to shrink an otherwise unrestricted time-varying parameter VAR to a stationary VAR, thus providing an easy way to (probabilistically) impose stationarity in time-varying parameter models. We demonstrate the effectiveness of the approach with a topical application, where we investigate the dynamic effects of structural shocks in government spending on U.S. taxes and GDP during a period of very low interest rates.