Federica Facchin - Academia.edu (original) (raw)
Papers by Federica Facchin
International Journal of Molecular Sciences
A wide variety of peptides not only interact with the cell surface, but govern complex signaling ... more A wide variety of peptides not only interact with the cell surface, but govern complex signaling from inside the cell. This has been referred to as an “intracrine” action, and the orchestrating molecules as “intracrines”. Here, we review the intracrine action of dynorphin B, a bioactive end-product of the prodynorphin gene, on nuclear opioid receptors and nuclear protein kinase C signaling to stimulate the transcription of a gene program of cardiogenesis. The ability of intracrine dynorphin B to prime the transcription of its own coding gene in isolated nuclei is discussed as a feed-forward loop of gene expression amplification and synchronization. We describe the role of hyaluronan mixed esters of butyric and retinoic acids as synthetic intracrines, controlling prodynorphin gene expression, cardiogenesis, and cardiac repair. We also discuss the increase in prodynorphin gene transcription and intracellular dynorphin B afforded by electromagnetic fields in stem cells, as a mechanism ...
Theoretical biology & medical modelling, 2005
Formal description of a cell's genetic information should provide the number of DNA molecules... more Formal description of a cell's genetic information should provide the number of DNA molecules in that cell and their complete nucleotide sequences. We pose the formal problem: can the genome sequence forming the genotype of a given living cell be known with absolute certainty so that the cell's behaviour (phenotype) can be correlated to that genetic information? To answer this question, we propose a series of thought experiments. We show that the genome sequence of any actual living cell cannot physically be known with absolute certainty, independently of the method used. There is an associated uncertainty, in terms of base pairs, equal to or greater than micros (where micro is the mutation rate of the cell type and s is the cell's genome size). This finding establishes an "uncertainty principle" in genetics for the first time, and its analogy with the Heisenberg uncertainty principle in physics is discussed. The genetic information that makes living cells work...
Gene, 2003
The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the... more The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the relative cloned cDNA, according to the rules for recognition of start codon (first-AUG rule, optimal sequence context) and the genetic code. From this prediction stem most subsequent types of product analysis, although all standard methods for cDNA cloning are affected by a potential inability to effectively clone the 5' region of mRNA. Revision by bioinformatics and cloning methods of 109 known genes located on human chromosome 21 (HC 21) shows that 60 mRNAs lack any in-frame stop upstream of the first-AUG, and that in five cases (DSCR1, KIAA0184, KIAA0539, SON, and TFF3) the coding region at the 5' end was incompletely characterized in the original descriptions. We describe the respective consequences for genomic annotation, domain and ortholog identification, and functional experiments design. We have also analyzed the sequences of 13,124 human mRNAs (RefSeq databank), discovering that in 6448 cases (49%), an in-frame stop codon is present upstream of the initiation codon, while in the other 6676 mRNAs (51%), identification of additional bases at the mRNA 5' region could well reveal some new upstream in-frame AUG codons in the optimal context. Proportionally to the HC 21 data, about 550 known human genes might thus be affected by this 5' end mRNA artifact.
Gene, 2003
The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the... more The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the relative cloned cDNA, according to the rules for recognition of start codon (first-AUG rule, optimal sequence context) and the genetic code. From this prediction stem most subsequent types of product analysis, although all standard methods for cDNA cloning are affected by a potential inability
Molecular Biology Reports, 2014
Cysteine/tyrosine-rich 1 (CYYR1) is a gene we previously identified on human chromosome 21 starti... more Cysteine/tyrosine-rich 1 (CYYR1) is a gene we previously identified on human chromosome 21 starting from an in-depth bioinformatics analysis of chromosome 21 segment 40/105 (21q21.3), where no coding region had previously been predicted. CYYR1 was initially characterized as a four-exon gene, whose brain-derived cDNA sequencing predicts a 154-amino acid product. In this study we provide, with in silico and in vitro analyses, the first detailed description of the human CYYR1 locus. The analysis of this locus revealed that it is composed of a multi-transcript system, which includes at least seven CYYR1 alternative spliced isoforms and a new CYYR1 antisense gene (named CYYR1-AS1). In particular, we cloned, for the first time, the following isoforms: CYYR1-1,2,3,4b and CYYR1-1,2,3b, which present a different 3' transcribed region, with a consequent different carboxy-terminus of the predicted proteins; CYYR1-1,2,4 lacks exon 3; CYYR1-1,2,2bis,3,4 presents an additional exon between exon 2 and exon 3; CYYR1-1b,2,3,4 presents a different 5' untranslated region when compared to CYYR1. The complexity of the locus is enriched by the presence of an antisense transcript. We have cloned a long transcript overlapping with CYYR1 as an antisense RNA, probably a non-coding RNA. Expression analysis performed in different normal tissues, tumour cell lines as well as in trisomy 21 and euploid fibroblasts has confirmed a quantitative and qualitative variability in the expression pattern of the multi-transcript locus, suggesting a possible role in complex diseases that should be further investigated.
PLoS ONE, 2011
Human RCAN3 (regulator of calcineurin 3) belongs to the human RCAN gene family. In this study we ... more Human RCAN3 (regulator of calcineurin 3) belongs to the human RCAN gene family. In this study we provide, with in silico and in vitro analyses, the first detailed description of the human multi-transcript RCAN3 locus. Its analysis revealed that it is composed of a multigene system that includes at least 21 RCAN3 alternative spliced isoforms (16 of them identified here for the first time) and a new RCAN3 antisense gene (RCAN3AS). In particular, we cloned RCAN3-1,3,4,5 (lacking exon 2), RCAN3-1a,2,3,4,5, RCAN3-1a,3,4,5, RCAN3-1b,2,3,4,5, RCAN3-1c,2,3,4,5, RCAN3-1c,2,4,5 and RCAN3-1c,3,4,5, isoforms that present a different 59 untranslated region when compared to RCAN3. Moreover, in order to verify the possible 59 incompleteness of previously identified cDNA isoforms with the reference exon 1, ten more alternative isoforms were retrieved. Bioinformatic searches allowed us to identify RCAN3AS, which overlaps in part with exon 1a, on the opposite strand, for which four different RCAN3AS isoforms were cloned. In order to analyze the different expression patterns of RCAN3 alternative first exons and of RCAN3AS mRNA isoforms, RT-PCR was performed in 17 human tissues. Finally, analyses of RCAN3 and RCAN3AS genomic sequences were performed to identify possible promoter regions, to examine donor and acceptor splice sequences and to compare evolutionary conservation, in particular of alternative exon 1 or 1c -exon 2 junctions in different species. The description of its number of transcripts, of their expression patterns and of their regulatory regions can be important to clarify the functions of RCAN3 gene in different pathways and cellular processes.
The Journal of Clinical Endocrinology & Metabolism, 1991
Several recent observations suggest that atrial natriuretic peptides (ANP) can modulate steroidog... more Several recent observations suggest that atrial natriuretic peptides (ANP) can modulate steroidogenesis in isolated rat Leydig cells. At present, it is unknown whether ANP influence human testicular steroidogenesis. We therefore evaluated the effects of alpha-human ANP (hANP) administration on testosterone plasma levels in peripheral and internal spermatic venous blood of young men (catheterized for contrast study of varicocele). Six subjects were injected with 100 micrograms alpha-hANP in the cubital vein. Six different patients similarly received 50 micrograms LHRH. Three controls received 2 ml saline. Plasma LH, FSH, and testosterone were then determined 15 min before, at time of injection, and 15, 30, 45, and 60 min thereafter in spermatic vein and peripheral venous blood, as well as at 120 min in peripheral blood. LHRH--induced LH increase was followed by a marked increase of spermatic vein testosterone concentrations, but the peripheral testosterone concentration did not increase. Similarly, alpha-hANP administration did not affect peripheral testosterone and LH concentrations, but significantly increased spermatic vein testosterone levels (P less than 0.01). Our findings demonstrate that alpha-hANP exerts its stimulatory effect on testicular steroidogenesis in man without modifying gonadotropin secretion, suggesting that alpha-hANP may directly influence Leydig cell function.
Gene, 2003
The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the... more The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the relative cloned cDNA, according to the rules for recognition of start codon (first-AUG rule, optimal sequence context) and the genetic code. From this prediction stem most subsequent types of product analysis, although all standard methods for cDNA cloning are affected by a potential inability to effectively clone the 5' region of mRNA. Revision by bioinformatics and cloning methods of 109 known genes located on human chromosome 21 (HC 21) shows that 60 mRNAs lack any in-frame stop upstream of the first-AUG, and that in five cases (DSCR1, KIAA0184, KIAA0539, SON, and TFF3) the coding region at the 5' end was incompletely characterized in the original descriptions. We describe the respective consequences for genomic annotation, domain and ortholog identification, and functional experiments design. We have also analyzed the sequences of 13,124 human mRNAs (RefSeq databank), discovering that in 6448 cases (49%), an in-frame stop codon is present upstream of the initiation codon, while in the other 6676 mRNAs (51%), identification of additional bases at the mRNA 5' region could well reveal some new upstream in-frame AUG codons in the optimal context. Proportionally to the HC 21 data, about 550 known human genes might thus be affected by this 5' end mRNA artifact.
Gene, 2006
Down syndrome critical region gene 1-like 2 (DSCR1L2) belongs to the human DSCR1-like gene family... more Down syndrome critical region gene 1-like 2 (DSCR1L2) belongs to the human DSCR1-like gene family, which also includes DSCR1 and DSCR1L1. Both DSCR1 and DSCR1L1 proteins interact with calcineurin, a calcium/calmodulin-dependent phosphatase. To date, no interactor has been described for DSCR1L2. The aim of this work was to perform a first functional study of DSCR1L2 using yeast two-hybrid analysis conducted on a human heart cDNA library. Here, we report the interaction between DSCR1L2 and the human cardiac troponin I (TNNI3), the heart-specific inhibitory subunit of the troponin complex, a central component of the contractile apparatus. This interaction was confirmed by both yeast cotransformation and GST (glutathione-sepharose transferase) fusion protein assay. Moreover, a new DSCR1L2 mRNA isoform, generated by alternative splicing, was identified and cloned in different tissues: it lacks two central exons, encoding the most conserved domains among the DSCR1-like protein family. A quantitative relative reverse transcription-polymerase chain reaction (RT-PCR) assay showed that in heart tissue the normalized expression level ratio for DSCR1L2 and DSCR1L2-E2E5 mRNA isoforms is 3.5 : 1, respectively. The yeast cotransformation and GST fusion protein assay demonstrated the interaction between this new DSCR1L2 variant and the human cardiac troponin I and the prominent role of DSCR1L2 exon 2 in determining binding between both DSCR1L2 isoforms and TNNI3. These data indicate an entirely new role for a DSCR1-like family gene, suggesting a possible involvement of DSCR1L2 in cardiac contraction.
BMC Genomics, 2011
Background: Several tools have been developed to perform global gene expression profile data anal... more Background: Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are speciesspecific, or limited to a particular data format) and they typically accept only gene lists as input. Results: TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with differential expression during the differentiation toward megakaryocyte were identified. Conclusions: TRAM is designed to create, and statistically analyze, quantitative transcriptome maps, based on gene expression data from multiple sources. The release includes FileMaker Pro database management runtime application and it is freely available at http://apollo11.isto.unibo.it/software/, along with preconfigured implementations for mapping of human, mouse and zebrafish transcriptomes.
BMC Cancer, 2007
Background: CYYR1 is a recently identified gene located on human chromosome 21 whose product has ... more Background: CYYR1 is a recently identified gene located on human chromosome 21 whose product has no similarity to any known protein and is of unknown function. Analysis of expressed sequence tags (ESTs) have revealed high human CYYR1 expression in cells belonging to the diffuse neuroendocrine system (DNES). These cells may be the origin of neuroendocrine (NE) tumors. The aim of this study was to conduct an initial analysis of sequence, splicing and expression of the CYYR1 mRNA in human NE tumors.
Bioinformatics, 2006
UniGene Tabulator 1.0 provides a solution for full parsing of UniGene flat file format; it implem... more UniGene Tabulator 1.0 provides a solution for full parsing of UniGene flat file format; it implements a structured graphical representation of each data field present in UniGene following import into a common database managing system usable in a personal computer. This database includes related tables for sequence, protein similarity, sequence-tagged site (STS) and transcript map interval (TXMAP) data, plus a summary table where each record represents a UniGene cluster. UniGene Tabulator enables full local management of UniGene data, allowing parsing, querying, indexing, retrieving, exporting and analysis of UniGene data in a relational database form, usable on Macintosh (OS X 10.3.9 or later) and Windows (2000, with service pack 4, XP, with service pack 2 or later) operating systems-based computers. Availability: The current release, including both the FileMaker runtime applications, is freely available at http://apollo11. isto.unibo. it/software/ Contact: pierluigi.strippoli@unibo.it Supplementary information: We also distribute a precalculated implementation for current Homo sapiens (build #190, March 2006) and Danio rerio (zebrafish, build #90, March 2006) UniGene data.
Annals of Human Genetics, 2004
Annals of Human Biology, 2013
Background: All living organisms are made of individual and identifiable cells, whose number, tog... more Background: All living organisms are made of individual and identifiable cells, whose number, together with their size and type, ultimately defines the structure and functions of an organism. While the total cell number of lower organisms is often known, it has not yet been defined in higher organisms. In particular, the reported total cell number of a human being ranges between 10 12 and 10 16 and it is widely mentioned without a proper reference. Aim: To study and discuss the theoretical issue of the total number of cells that compose the standard human adult organism. Subjects and methods: A systematic calculation of the total cell number of the whole human body and of the single organs was carried out using bibliographical and/or mathematical approaches. Results: A current estimation of human total cell number calculated for a variety of organs and cell types is presented. These partial data correspond to a total number of 3.72 Â 10 13 . Conclusions: Knowing the total cell number of the human body as well as of individual organs is important from a cultural, biological, medical and comparative modelling point of view. The presented cell count could be a starting point for a common effort to complete the total calculation.
Gene, 2008
Human RCAN3 (Regulator of calcineurin 3; previously known as DSCR1L2, Down syndrome critical regi... more Human RCAN3 (Regulator of calcineurin 3; previously known as DSCR1L2, Down syndrome critical region gene 1-like 2) is a five-exon gene mapped on chromosome 1 and belongs to the human RCAN gene family which also includes RCAN1 and RCAN2. The novel denomination RCAN for genes and proteins, instead of DSCR1L (Down syndrome critical region gene 1-like) has recently been widely discussed. The aim of the present work was to perform a multiple approach analysis of five RCAN3 mRNA and encoded protein isoforms, two of which have been identified for the first time in this research. The two new RCAN3 mRNA isoforms, RCAN3-2,4,5, which lacks exon 3, and RCAN3-2,3,5, which lacks exon 4, were identified during RCAN3 RT-PCR (reverse transcription-polymerase chain reaction) cloning, the product of which unexpectedly revealed the presence of five isoforms as opposed to the three previously known. In order to analyze the expression pattern of the five RCAN3 mRNA isoforms in seven different human tissues, a quantitative relative RT-PCR was performed: interestingly, all isoforms are present in all tissues investigated, with a statistically significant constant prevalence of RCAN3 isoform (the most complete, "reference" isoform). The RCAN3 locus expression level was comparable in all seven tissues analyzed, considering all isoforms, which indicates a ubiquitous expression of this human RCAN family member. To date two possible interactors have been described for this protein: human cardiac troponin I (TNNI3) and calcineurin. Here we report the interaction between the new RCAN3 variants and TNNI3, demonstrated by both yeast cotransformation and by the GST (glutathione-sepharose transferase) fusion protein assay, as was to be expected from the presence of exon 2 whose product has been seen to be sufficient for binding to TNNI3.
International Journal of Molecular Sciences
A wide variety of peptides not only interact with the cell surface, but govern complex signaling ... more A wide variety of peptides not only interact with the cell surface, but govern complex signaling from inside the cell. This has been referred to as an “intracrine” action, and the orchestrating molecules as “intracrines”. Here, we review the intracrine action of dynorphin B, a bioactive end-product of the prodynorphin gene, on nuclear opioid receptors and nuclear protein kinase C signaling to stimulate the transcription of a gene program of cardiogenesis. The ability of intracrine dynorphin B to prime the transcription of its own coding gene in isolated nuclei is discussed as a feed-forward loop of gene expression amplification and synchronization. We describe the role of hyaluronan mixed esters of butyric and retinoic acids as synthetic intracrines, controlling prodynorphin gene expression, cardiogenesis, and cardiac repair. We also discuss the increase in prodynorphin gene transcription and intracellular dynorphin B afforded by electromagnetic fields in stem cells, as a mechanism ...
Theoretical biology & medical modelling, 2005
Formal description of a cell's genetic information should provide the number of DNA molecules... more Formal description of a cell's genetic information should provide the number of DNA molecules in that cell and their complete nucleotide sequences. We pose the formal problem: can the genome sequence forming the genotype of a given living cell be known with absolute certainty so that the cell's behaviour (phenotype) can be correlated to that genetic information? To answer this question, we propose a series of thought experiments. We show that the genome sequence of any actual living cell cannot physically be known with absolute certainty, independently of the method used. There is an associated uncertainty, in terms of base pairs, equal to or greater than micros (where micro is the mutation rate of the cell type and s is the cell's genome size). This finding establishes an "uncertainty principle" in genetics for the first time, and its analogy with the Heisenberg uncertainty principle in physics is discussed. The genetic information that makes living cells work...
Gene, 2003
The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the... more The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the relative cloned cDNA, according to the rules for recognition of start codon (first-AUG rule, optimal sequence context) and the genetic code. From this prediction stem most subsequent types of product analysis, although all standard methods for cDNA cloning are affected by a potential inability to effectively clone the 5' region of mRNA. Revision by bioinformatics and cloning methods of 109 known genes located on human chromosome 21 (HC 21) shows that 60 mRNAs lack any in-frame stop upstream of the first-AUG, and that in five cases (DSCR1, KIAA0184, KIAA0539, SON, and TFF3) the coding region at the 5' end was incompletely characterized in the original descriptions. We describe the respective consequences for genomic annotation, domain and ortholog identification, and functional experiments design. We have also analyzed the sequences of 13,124 human mRNAs (RefSeq databank), discovering that in 6448 cases (49%), an in-frame stop codon is present upstream of the initiation codon, while in the other 6676 mRNAs (51%), identification of additional bases at the mRNA 5' region could well reveal some new upstream in-frame AUG codons in the optimal context. Proportionally to the HC 21 data, about 550 known human genes might thus be affected by this 5' end mRNA artifact.
Gene, 2003
The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the... more The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the relative cloned cDNA, according to the rules for recognition of start codon (first-AUG rule, optimal sequence context) and the genetic code. From this prediction stem most subsequent types of product analysis, although all standard methods for cDNA cloning are affected by a potential inability
Molecular Biology Reports, 2014
Cysteine/tyrosine-rich 1 (CYYR1) is a gene we previously identified on human chromosome 21 starti... more Cysteine/tyrosine-rich 1 (CYYR1) is a gene we previously identified on human chromosome 21 starting from an in-depth bioinformatics analysis of chromosome 21 segment 40/105 (21q21.3), where no coding region had previously been predicted. CYYR1 was initially characterized as a four-exon gene, whose brain-derived cDNA sequencing predicts a 154-amino acid product. In this study we provide, with in silico and in vitro analyses, the first detailed description of the human CYYR1 locus. The analysis of this locus revealed that it is composed of a multi-transcript system, which includes at least seven CYYR1 alternative spliced isoforms and a new CYYR1 antisense gene (named CYYR1-AS1). In particular, we cloned, for the first time, the following isoforms: CYYR1-1,2,3,4b and CYYR1-1,2,3b, which present a different 3' transcribed region, with a consequent different carboxy-terminus of the predicted proteins; CYYR1-1,2,4 lacks exon 3; CYYR1-1,2,2bis,3,4 presents an additional exon between exon 2 and exon 3; CYYR1-1b,2,3,4 presents a different 5' untranslated region when compared to CYYR1. The complexity of the locus is enriched by the presence of an antisense transcript. We have cloned a long transcript overlapping with CYYR1 as an antisense RNA, probably a non-coding RNA. Expression analysis performed in different normal tissues, tumour cell lines as well as in trisomy 21 and euploid fibroblasts has confirmed a quantitative and qualitative variability in the expression pattern of the multi-transcript locus, suggesting a possible role in complex diseases that should be further investigated.
PLoS ONE, 2011
Human RCAN3 (regulator of calcineurin 3) belongs to the human RCAN gene family. In this study we ... more Human RCAN3 (regulator of calcineurin 3) belongs to the human RCAN gene family. In this study we provide, with in silico and in vitro analyses, the first detailed description of the human multi-transcript RCAN3 locus. Its analysis revealed that it is composed of a multigene system that includes at least 21 RCAN3 alternative spliced isoforms (16 of them identified here for the first time) and a new RCAN3 antisense gene (RCAN3AS). In particular, we cloned RCAN3-1,3,4,5 (lacking exon 2), RCAN3-1a,2,3,4,5, RCAN3-1a,3,4,5, RCAN3-1b,2,3,4,5, RCAN3-1c,2,3,4,5, RCAN3-1c,2,4,5 and RCAN3-1c,3,4,5, isoforms that present a different 59 untranslated region when compared to RCAN3. Moreover, in order to verify the possible 59 incompleteness of previously identified cDNA isoforms with the reference exon 1, ten more alternative isoforms were retrieved. Bioinformatic searches allowed us to identify RCAN3AS, which overlaps in part with exon 1a, on the opposite strand, for which four different RCAN3AS isoforms were cloned. In order to analyze the different expression patterns of RCAN3 alternative first exons and of RCAN3AS mRNA isoforms, RT-PCR was performed in 17 human tissues. Finally, analyses of RCAN3 and RCAN3AS genomic sequences were performed to identify possible promoter regions, to examine donor and acceptor splice sequences and to compare evolutionary conservation, in particular of alternative exon 1 or 1c -exon 2 junctions in different species. The description of its number of transcripts, of their expression patterns and of their regulatory regions can be important to clarify the functions of RCAN3 gene in different pathways and cellular processes.
The Journal of Clinical Endocrinology & Metabolism, 1991
Several recent observations suggest that atrial natriuretic peptides (ANP) can modulate steroidog... more Several recent observations suggest that atrial natriuretic peptides (ANP) can modulate steroidogenesis in isolated rat Leydig cells. At present, it is unknown whether ANP influence human testicular steroidogenesis. We therefore evaluated the effects of alpha-human ANP (hANP) administration on testosterone plasma levels in peripheral and internal spermatic venous blood of young men (catheterized for contrast study of varicocele). Six subjects were injected with 100 micrograms alpha-hANP in the cubital vein. Six different patients similarly received 50 micrograms LHRH. Three controls received 2 ml saline. Plasma LH, FSH, and testosterone were then determined 15 min before, at time of injection, and 15, 30, 45, and 60 min thereafter in spermatic vein and peripheral venous blood, as well as at 120 min in peripheral blood. LHRH--induced LH increase was followed by a marked increase of spermatic vein testosterone concentrations, but the peripheral testosterone concentration did not increase. Similarly, alpha-hANP administration did not affect peripheral testosterone and LH concentrations, but significantly increased spermatic vein testosterone levels (P less than 0.01). Our findings demonstrate that alpha-hANP exerts its stimulatory effect on testicular steroidogenesis in man without modifying gonadotropin secretion, suggesting that alpha-hANP may directly influence Leydig cell function.
Gene, 2003
The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the... more The amino acid sequence of gene products is routinely deduced from the nucleotide sequence of the relative cloned cDNA, according to the rules for recognition of start codon (first-AUG rule, optimal sequence context) and the genetic code. From this prediction stem most subsequent types of product analysis, although all standard methods for cDNA cloning are affected by a potential inability to effectively clone the 5' region of mRNA. Revision by bioinformatics and cloning methods of 109 known genes located on human chromosome 21 (HC 21) shows that 60 mRNAs lack any in-frame stop upstream of the first-AUG, and that in five cases (DSCR1, KIAA0184, KIAA0539, SON, and TFF3) the coding region at the 5' end was incompletely characterized in the original descriptions. We describe the respective consequences for genomic annotation, domain and ortholog identification, and functional experiments design. We have also analyzed the sequences of 13,124 human mRNAs (RefSeq databank), discovering that in 6448 cases (49%), an in-frame stop codon is present upstream of the initiation codon, while in the other 6676 mRNAs (51%), identification of additional bases at the mRNA 5' region could well reveal some new upstream in-frame AUG codons in the optimal context. Proportionally to the HC 21 data, about 550 known human genes might thus be affected by this 5' end mRNA artifact.
Gene, 2006
Down syndrome critical region gene 1-like 2 (DSCR1L2) belongs to the human DSCR1-like gene family... more Down syndrome critical region gene 1-like 2 (DSCR1L2) belongs to the human DSCR1-like gene family, which also includes DSCR1 and DSCR1L1. Both DSCR1 and DSCR1L1 proteins interact with calcineurin, a calcium/calmodulin-dependent phosphatase. To date, no interactor has been described for DSCR1L2. The aim of this work was to perform a first functional study of DSCR1L2 using yeast two-hybrid analysis conducted on a human heart cDNA library. Here, we report the interaction between DSCR1L2 and the human cardiac troponin I (TNNI3), the heart-specific inhibitory subunit of the troponin complex, a central component of the contractile apparatus. This interaction was confirmed by both yeast cotransformation and GST (glutathione-sepharose transferase) fusion protein assay. Moreover, a new DSCR1L2 mRNA isoform, generated by alternative splicing, was identified and cloned in different tissues: it lacks two central exons, encoding the most conserved domains among the DSCR1-like protein family. A quantitative relative reverse transcription-polymerase chain reaction (RT-PCR) assay showed that in heart tissue the normalized expression level ratio for DSCR1L2 and DSCR1L2-E2E5 mRNA isoforms is 3.5 : 1, respectively. The yeast cotransformation and GST fusion protein assay demonstrated the interaction between this new DSCR1L2 variant and the human cardiac troponin I and the prominent role of DSCR1L2 exon 2 in determining binding between both DSCR1L2 isoforms and TNNI3. These data indicate an entirely new role for a DSCR1-like family gene, suggesting a possible involvement of DSCR1L2 in cardiac contraction.
BMC Genomics, 2011
Background: Several tools have been developed to perform global gene expression profile data anal... more Background: Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are speciesspecific, or limited to a particular data format) and they typically accept only gene lists as input. Results: TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with differential expression during the differentiation toward megakaryocyte were identified. Conclusions: TRAM is designed to create, and statistically analyze, quantitative transcriptome maps, based on gene expression data from multiple sources. The release includes FileMaker Pro database management runtime application and it is freely available at http://apollo11.isto.unibo.it/software/, along with preconfigured implementations for mapping of human, mouse and zebrafish transcriptomes.
BMC Cancer, 2007
Background: CYYR1 is a recently identified gene located on human chromosome 21 whose product has ... more Background: CYYR1 is a recently identified gene located on human chromosome 21 whose product has no similarity to any known protein and is of unknown function. Analysis of expressed sequence tags (ESTs) have revealed high human CYYR1 expression in cells belonging to the diffuse neuroendocrine system (DNES). These cells may be the origin of neuroendocrine (NE) tumors. The aim of this study was to conduct an initial analysis of sequence, splicing and expression of the CYYR1 mRNA in human NE tumors.
Bioinformatics, 2006
UniGene Tabulator 1.0 provides a solution for full parsing of UniGene flat file format; it implem... more UniGene Tabulator 1.0 provides a solution for full parsing of UniGene flat file format; it implements a structured graphical representation of each data field present in UniGene following import into a common database managing system usable in a personal computer. This database includes related tables for sequence, protein similarity, sequence-tagged site (STS) and transcript map interval (TXMAP) data, plus a summary table where each record represents a UniGene cluster. UniGene Tabulator enables full local management of UniGene data, allowing parsing, querying, indexing, retrieving, exporting and analysis of UniGene data in a relational database form, usable on Macintosh (OS X 10.3.9 or later) and Windows (2000, with service pack 4, XP, with service pack 2 or later) operating systems-based computers. Availability: The current release, including both the FileMaker runtime applications, is freely available at http://apollo11. isto.unibo. it/software/ Contact: pierluigi.strippoli@unibo.it Supplementary information: We also distribute a precalculated implementation for current Homo sapiens (build #190, March 2006) and Danio rerio (zebrafish, build #90, March 2006) UniGene data.
Annals of Human Genetics, 2004
Annals of Human Biology, 2013
Background: All living organisms are made of individual and identifiable cells, whose number, tog... more Background: All living organisms are made of individual and identifiable cells, whose number, together with their size and type, ultimately defines the structure and functions of an organism. While the total cell number of lower organisms is often known, it has not yet been defined in higher organisms. In particular, the reported total cell number of a human being ranges between 10 12 and 10 16 and it is widely mentioned without a proper reference. Aim: To study and discuss the theoretical issue of the total number of cells that compose the standard human adult organism. Subjects and methods: A systematic calculation of the total cell number of the whole human body and of the single organs was carried out using bibliographical and/or mathematical approaches. Results: A current estimation of human total cell number calculated for a variety of organs and cell types is presented. These partial data correspond to a total number of 3.72 Â 10 13 . Conclusions: Knowing the total cell number of the human body as well as of individual organs is important from a cultural, biological, medical and comparative modelling point of view. The presented cell count could be a starting point for a common effort to complete the total calculation.
Gene, 2008
Human RCAN3 (Regulator of calcineurin 3; previously known as DSCR1L2, Down syndrome critical regi... more Human RCAN3 (Regulator of calcineurin 3; previously known as DSCR1L2, Down syndrome critical region gene 1-like 2) is a five-exon gene mapped on chromosome 1 and belongs to the human RCAN gene family which also includes RCAN1 and RCAN2. The novel denomination RCAN for genes and proteins, instead of DSCR1L (Down syndrome critical region gene 1-like) has recently been widely discussed. The aim of the present work was to perform a multiple approach analysis of five RCAN3 mRNA and encoded protein isoforms, two of which have been identified for the first time in this research. The two new RCAN3 mRNA isoforms, RCAN3-2,4,5, which lacks exon 3, and RCAN3-2,3,5, which lacks exon 4, were identified during RCAN3 RT-PCR (reverse transcription-polymerase chain reaction) cloning, the product of which unexpectedly revealed the presence of five isoforms as opposed to the three previously known. In order to analyze the expression pattern of the five RCAN3 mRNA isoforms in seven different human tissues, a quantitative relative RT-PCR was performed: interestingly, all isoforms are present in all tissues investigated, with a statistically significant constant prevalence of RCAN3 isoform (the most complete, "reference" isoform). The RCAN3 locus expression level was comparable in all seven tissues analyzed, considering all isoforms, which indicates a ubiquitous expression of this human RCAN family member. To date two possible interactors have been described for this protein: human cardiac troponin I (TNNI3) and calcineurin. Here we report the interaction between the new RCAN3 variants and TNNI3, demonstrated by both yeast cotransformation and by the GST (glutathione-sepharose transferase) fusion protein assay, as was to be expected from the presence of exon 2 whose product has been seen to be sufficient for binding to TNNI3.