Faisal Candrasyah Hasibuan - Academia.edu (original) (raw)

Papers by Faisal Candrasyah Hasibuan

Research paper thumbnail of Random-guided optimizer: a metaheuristic that shifts random search to guided search through iteration

Bulletin of Electrical Engineering and Informatics, Aug 1, 2024

This study offers a new swarm-based metaheuristic: random-guided optimizer (RGO). RGO has novel m... more This study offers a new swarm-based metaheuristic: random-guided optimizer (RGO). RGO has novel mechanics in shifting the random motion into a guided motion strategy during the iteration. In RGO, the iteration is divided into three equal size phases. In the first phase, the unit walks randomly inside the search space to tackle the local optimal problem earlier. In the second phase, each unit uses a unit selected randomly among the population as a reference in conducting the guided motion. In the third phase, each unit conducts guided motion toward or surpasses the best unit. Through simulation, RGO successfully finds the acceptable solution for 23 benchmark functions. Moreover, RGO successfully finds the global optimal solution for four functions: Branin, Goldstein-Price, Six Hump Camel, and Schwefel 2.22. RGO also outperforms slime mold algorithm (SMA), pelican optimization algorithm (POA), golden search optimizer (GSO), and northern goshawk optimizer (NGO) in solving 12, 20, 12, and 1 function consecutively. In the future, improvement can be made by transforming RGO into solid multiple-phase strategy without losing its identity as a metaheuristic with multiple strategy in every iteration.

Research paper thumbnail of Half mirror algorithm: a metaheuristic that hybridizes swarm intelligence and evolution-based system

International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering, Jun 1, 2024

This paper promotes a new metaheuristic called the half mirror algorithm (HMA). As its name sugge... more This paper promotes a new metaheuristic called the half mirror algorithm (HMA). As its name suggests, HMA offers a new kind of mirroring search. HMA is developed by hybridizing swarm intelligence and the evolution system. Swarm intelligence is adopted by constructing several autonomous agents called swarms. On the other hand, the evolution system is adopted using arithmetic crossover based on a particular reference called a mirror. Four mirrors are used in HMA: the best swarm member, a randomly selected swarm member, the central point of the space, and the corresponding swarm member. During the confrontative assessment, HMA is confronted with average and subtraction-based optimization (ASBO), total interaction algorithm (TIA), walrus optimization algorithm (WaOA), coati optimization algorithm (COA), and clouded leopard optimization (CLO). The result shows that HMA is superior to ASBO, TIA, WaOA, COA, and CLO in 20, 19, 19, 20, and 20 out of 23 functions, respectively. Moreover, HMA has found the global optimal of eight functions. It means the superiority of HMA occurs in almost entire functions. In the future, the mirroring search can be combined with the guided and neighborhood search to construct a more powerful metaheuristic.

Research paper thumbnail of Swarm flip-crossover algorithm: a new swarm-based metaheuristic enriched with a crossover strategy

International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering, Apr 1, 2024

A new swarm-based metaheuristic that is also enriched with the crossover technique called swarm f... more A new swarm-based metaheuristic that is also enriched with the crossover technique called swarm flip-crossover algorithm (SFCA) is introduced in this work. SFCA uses swarm intelligence as its primary technique and the crossover as its secondary one. It consists of three searches in every iteration. The swarm member walks toward the best member as the first search. The central point of the swarm becomes the target in the second search. There are two walks in the second search. The first walk is getting closer to the target, while the second is avoiding the target. The better result between these two walks becomes the candidate for the replacement. In the third search, the swarm member performs balance arithmetic crossover with the central point of the space or jumps to the opposite location within the area (flipping). The assessment is taken by confronting SFCA with five new metaheuristics: slime mold algorithm (SMA), golden search optimization (GSO), osprey optimization algorithm (OOA), coati optimization algorithm (COA), and walrus optimization algorithm (WaOA) in handling the set of 23 functions. The result shows that SFCA performs consecutively better than

Research paper thumbnail of Best-worst northern goshawk optimizer: a new stochastic optimization method

This study introduces a new metaheuristic method: the best-worst northern goshawk optimizer (BW-N... more This study introduces a new metaheuristic method: the best-worst northern goshawk optimizer (BW-NGO). This algorithm is an enhanced version of the northern goshawk optimizer (NGO). Every BW-NGO iteration consists of four phases. First, each agent advances toward the best agent and away from the worst agent. Second, each agent moves relatively to the agent selected at random. Third, each agent conducts a local search. Fourth, each agent traces the space at random. The first three phases are mandatory, while the fourth phase is optional. Simulation is performed to assess the performance of BW-NGO. In this simulation, BW-NGO is confronted with four algorithms: particle swarm optimization (PSO), pelican optimization algorithm (POA), golden search optimizer (GSO), and northern goshawk optimizer (NGO). The result exhibits that BW-NGO discovers an acceptable solution for the 23 benchmark functions. BW-NGO is better than PSO, POA, GSO, and NGO in consecutively optimizing 22, 20, 15, and 11 functions. BW-NGO can discover the global optimal solution for three functions.

Research paper thumbnail of WebGIS-Based Soil Fertility Information System in Cibodas Botanical Garden

Research paper thumbnail of Partial Leader Optimizer

International Journal on Advanced Science, Engineering and Information Technology

Research paper thumbnail of Perancangan Dan Implementasi Sistem Pengatur Suhu Dan Cahaya Berdasarkan Okupansi Pada Ruangan Kelas Berbasis Smart Building

eProceedings of Engineering, Aug 1, 2020

Abstrak Internet telah menjadi kebutuhan sehari-hari yang paling efektif sebagai media untuk beri... more Abstrak Internet telah menjadi kebutuhan sehari-hari yang paling efektif sebagai media untuk berinteraksi dan berkomunikasi dengan saling menukar data dan informasi yang ada di lingkungan sekitar kita. Salah satu pengaplikasian internet yang sudah banyak ada yaitu Internet of Things (IoT). Berkat Internet of Things, objek-objek tertentu di sekitar kita dapat berhubungan secara mandiri dengan dunia nyata dan tanpa campur tangan manusia secara langsung. Dalam penelitian ini penulis menggunakan IoT untuk mengatur kondisi lingkungan agar menjadi hemat energi di ruangan kelas. Ini adalah salah satu implementasi pada sistem smart building dengan menggunakan Internet of Things. Pada penelitian ini dibuat sistem yang berbasis smart building yang memiliki fungsi untuk mengatur suhu dan cahaya pada ruangan kelas dengan mengatur kipas, tirai dan lampu berdasarkan data sensor dan okupansi pada ruangan kelas. Pengendali yang digunakan pada penelitian ini adalah Mikrokontroler Arduino Uno. Adapun sensor-sensor yang digunakan yaitu sensor DHT11 sebagai pendeteksi suhu pada ruangan dan sensor BH1750 sebagai pendeteksi tingkat intensitas cahaya pada ruangan kelas. Dari hasil pengujian yang dilakukan, hasil rata-rata error pada BH1750 adalah sebesar 14% dan hasil rata-rata error DHT11 sebesar 4%. Sistem kontrol dapat berjalan sesuai dengan decision making dengan rata-rata delay eksekusi yaitu sebesar 5.6 detik dan akurasinya 100%. Kata kunci: Arduino Uno , BH1750, DHT11, Internet of Things, smart building. Abstract The internet has become the most effective daily necessity as a medium for interacting and communicating by exchanging data and information around us. One application of the internet that already exists is the Internet of Things (IoT). Thanks to the Internet of Things, certain objects around us can be connected independently to the real world and without direct human intervention. In this research, the authors used IoT to be deployed in the environment to increase the energy efficiency in the classroom. This is an implementation of a smart building system using the Internet of Things. In this research, a smart building based system has a function as a system that can regulate temperature and light in the classroom by controlling fan, curtains and lights based on sensor data and occupancy in the classroom. The controller used in this research is Arduino Uno Microcontroller. The sensors used are the DHT11 module as a temperature sensor in the room and the BH1750 module as a sensor for the level of light intensity in the classroom. From the results of tests conducted, the average error result of BH1750 is 14% and the average DHT11 error result is 4%. The control system can run according to decision making with an average execution delay of 5.6 seconds and 100% accuracy. Keywords: Arduino Uno , BH1750, DHT11, Internet of Things, smart building.

Research paper thumbnail of Prediction System on Electricity Consumption using Web-Based LSTM Algorithm

[CEPAT] Journal of Computer Engineering: Progress, Application and Technology

The technology development from year to year is increasing rapidly, especially in the electronics... more The technology development from year to year is increasing rapidly, especially in the electronics devices such as notebooks and smartphones. With the rapid development of technology, lifestyle habits have also changed. This can lead to an increase in the use of electrical energy. In addition, the negligence of electricity users in monitoring electricity usage at the place of the electricity meter also causes an increase in electrical energy. Monitoring the electricity meter in real time can limit the user from manage their electricity efficiently. This study aims to create a web-based electrical energy usage prediction system. This system can make it easier for users to manage and reduce waste of electrical energy. In the development of this system, it begins by collecting image data of remaining electricity which are processed manually into electrical energy consumption data. Then the data is pre-processed so that the data is clean and ready to use. The clean data is carried out by...

Research paper thumbnail of もの(IoT)のインターネット:IBM BlueMixを用いた自動車モニタリングシステム【Powered by NICT】

Research paper thumbnail of Random Forest Implementation in Prepaid Electric Meter Recognition

[CEPAT] Journal of Computer Engineering: Progress, Application and Technology

While prepaid electricity services provide better flexibility, it comes with an additional step f... more While prepaid electricity services provide better flexibility, it comes with an additional step for the customer. Instead of paying a monthly bill based on electric usage, a prepaid system requires customers to actively predict their electricity usage before they pay for the correct electricity value. This presents a challenge because Underestimating electricity usage may lead to a power outage. Therefore, a system that monitors electricity can be developed to address this issue. There are two approaches to developing an electric monitoring system: designing the electric meter equipped with monitoring features or designing an external capturing device to work with the current electric meter. The first approach is costly and requires a meter disassembly. Thus, in this paper, the second approach is used. By utilizing image processing and a Random Forest machine learning algorithm, a monitoring device can be developed to read the digital meter's display. Although it may affect perf...

Research paper thumbnail of Performance Analysis of Smart Irrigation System using Fuzzy Logic Method

2022 International Conference on Advanced Creative Networks and Intelligent Systems (ICACNIS)

Research paper thumbnail of Raspberry Pi: Mikrokontroler Mungil Yang Bisa Bisa

Research paper thumbnail of Sistem Manajemen Daya Rumah Cerdas Berbasiskan Raspberry Pi

Berkembangnya tingkat aktivitas dewasa ini menyebabkan manusia tidak memiliki banyak waktu untuk ... more Berkembangnya tingkat aktivitas dewasa ini menyebabkan manusia tidak memiliki banyak waktu untuk mengurusi banyak hal. Alhasil, hal-hal kecil seperti mematikan lampu, TV, AC, dan berbagai peralatan listrik lainnya sering terlupakan. Bagi pemilik rumah sewa, perilaku seperti ini bisa merugikan karena akan menyebabkan tagihan listrik yang tidak diinginkan. Dari survei yang dilakukan terhadap 10 koresponden yang terdiri dari pemilik dan penyewa rumah dengan tarif sewa yang bervariasi hingga Rp10.000.000,00 per tahun, didapatkan data peralatan listrik yang sering lupa dimatikan ketika tidak digunakan, seperti lampu, laptop, dan charger. Alasannya adalah lupa karena terburu-buru berangkat kerja/kuliah. Sedangkan pemilik rumah sewa kesulitan untuk mengetahui dan mengontrol penggunaan peralatan listrik yang digunakan oleh penyewa. Oleh karena itu, dibutuhkan suatu sistem yang mampu mengendalikan dan memonitor penggunaan peralatan listrik setiap saat. Dalam tugas akhir ini dibuat suatu sist...

Research paper thumbnail of Driver Supervisor System with Telegram Bot Platform

Computational Collective Intelligence, 2018

The biggest factor causes traffic accidents is human errors. Bad driving behavior could increase ... more The biggest factor causes traffic accidents is human errors. Bad driving behavior could increase the risk factor of accidents. Besides, it would lead to damage the vehicle quickly. The bad behavior could come from the less awareness of the driver or the lack of knowledge in the manner of the good and safe driving behavior. Therefore, in this research, a system is developed to know the driver’s behavior while he/she is driving, especially for car rental agencies. The system will work as a supervisor which notify the driver and a car rental administrator when the driver makes a mistake based on desired rules and tell him/her what should be done. The driver will receive supervisions through text messages over a Telegram Channel and voicemails over a speaker. Utilizing vehicle diagnostic data which are retrieved directly from the vehicle using the On-Board Diagnostic (OBD) II unit, the driver’s behavior can be analyzed in real time. OBD II is connected with Raspberry Pi 2 and then integrated with Telegram Bot platform, adopting Internet of Things (IoT) technology. The results of this research show the complete driving log based on selected parameters and supervision messages received by the driver related to him/her mistakes. The field test generated 7098 lines of data in a log file, which is 1145 of them exceed the limit. At least 71 supervision messages received by the driver within limit of 4 messages per minute. The calculated bandwidth used is 68.8 bytes per minute per message and it is recommended to use at least 12.1 MB monthly data plan to accommodate 175,200 supervision messages monthly. Stable Internet connection is required more than high speed Internet to keep the real-time connection alive.

Research paper thumbnail of Perancangan Dan Implementasi Sistem Pengatur Suhu Dan Cahaya Berdasarkan Okupansi Pada Ruangan Kelas Berbasis Smart Building

Abstrak Internet telah menjadi kebutuhan sehari-hari yang paling efektif sebagai media untuk beri... more Abstrak Internet telah menjadi kebutuhan sehari-hari yang paling efektif sebagai media untuk berinteraksi dan berkomunikasi dengan saling menukar data dan informasi yang ada di lingkungan sekitar kita. Salah satu pengaplikasian internet yang sudah banyak ada yaitu Internet of Things (IoT). Berkat Internet of Things, objek-objek tertentu di sekitar kita dapat berhubungan secara mandiri dengan dunia nyata dan tanpa campur tangan manusia secara langsung. Dalam penelitian ini penulis menggunakan IoT untuk mengatur kondisi lingkungan agar menjadi hemat energi di ruangan kelas. Ini adalah salah satu implementasi pada sistem smart building dengan menggunakan Internet of Things. Pada penelitian ini dibuat sistem yang berbasis smart building yang memiliki fungsi untuk mengatur suhu dan cahaya pada ruangan kelas dengan mengatur kipas, tirai dan lampu berdasarkan data sensor dan okupansi pada ruangan kelas. Pengendali yang digunakan pada penelitian ini adalah Mikrokontroler Arduino Uno. Adapun...

Research paper thumbnail of Applied Internet of Things (IoT): Car monitoring system using IBM BlueMix

2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2016

Wide application of Internet technology brings the technology Internet of Things (IoT), a technol... more Wide application of Internet technology brings the technology Internet of Things (IoT), a technology where any object can be on the internet and communicate with each other. This research will bring IoT technology to build the smart car system, which can be monitored and can actively report the condition to predict routine maintenance and provide information in order to achieve an efficient way of driving. Smart Car is realized by utilizing a standard On-Board Diagnostic (OBD) which is applied to the vehicles available at this time. OBD allows any vehicle parameters can be monitored electronically using the OBD Scanner tool. Monitored parameters will be uploaded to a cloud server utilizing IBM BlueMix applications and make the car as the IoT that can be analyzed in order to obtain information for predictive maintenance and monitoring of the Smart Car. The purpose of this research is to apply IoT in the smart car system so that car's predictive maintenance and monitoring functions can be realized. Big data analysist from the cloud would be informed to either driver, owners, or technician. This system is expected to be able to increase the efficiency of the car because of observed and supervised driving behavior which is able to reduce fuel consumption and exhaust emissions.

Research paper thumbnail of Pengembangan Sistem Deteksi Occupancy Menggunakan Computer Vision Untuk Smart Building Dan Automation

Abstrak Deteksi Occupancy dalam tugas akhir ini ditujukan untuk mendeteksi kehadiran orang dalam ... more Abstrak Deteksi Occupancy dalam tugas akhir ini ditujukan untuk mendeteksi kehadiran orang dalam ruangan kelas yang akan digunakan untuk mengontrol intensitas cahaya dan suhu dalam ruangan. Dalam Tugas Akhir ini dibahas tentang pengembangan sistem deteksi occupancy, khususnya deteksi kehadiran manusia dalam ruangan kelas dengan menggunakan computer vision. Deep learning digunakan untuk memprediksi kehadiran manusia dari data citra atau video. Data yang didapat akan diolah, lalu keluarannya akan diteruskan ke kontroler untuk mengontrol kipas angin, lampu, dan tirai pada ruangan kelas. Pengembangan sistem deteksi okupansi ini bertujuan untuk meningkatkan efisiensi penggunaan energi pada ruangan kelas dengan mengontrol peralatan elektronik di dalam kelas dengan berdasarkan pada hasil deteksi okupansi. Dari penelitian ini didapatkan hasil akurasi rata-rata dalam mendeteksi orang sebesar 83.45%. Kata Kunci: Computer Vision, Deep Learning, IoT, Machine Learning, Occupancy Abstract Occupan...

Research paper thumbnail of Perancangan Aplikasi Deteksi Sifat Manusia Menggunakan Garis Tangan Dengan Gray-level Co-occurrence Matrix (glcm) Pada Citra Berbasis Android

Abstrak Deteksi melalui pola garis telapak tangan manusia (palmistry) dapat dilakukan dengan muda... more Abstrak Deteksi melalui pola garis telapak tangan manusia (palmistry) dapat dilakukan dengan mudah apabila dibantu dengan aplikasi yang dirancang khusus untuk melakukan tugas tersebut. Input yang diperlukan berupa gambar telapak tangan objek menggunakan smartphone berbasis android.Kemudian system akan melakukan pencocokkan pola garis tangan dari inputan dengan data terdapat pada database. Output dari system adalah berupa class terdekat atau class yang sesuai dari garis tangan pengguna ingin dikenali hasil dari analisa pola garis tangan pengguna dengan pola garis tangan yang ada di database berupa karakter dari pemilik pola garis tangan tersebut. Kata Kunci: Ramalan Pola Garis Telapak Tangan, GRAY-LEVEL COOCCURRENCE MATRIX (GLCM), Sistem Pakar Abstract Detection through palmistry can be done easily when aided by an application specifically designed to do the task. The required input is in the form of an object palm using an Android-based smartphone. Then the system will match the han...

Research paper thumbnail of Identifikasi Persediaan Makanan di dalam Lemari Pendingin Berbasis Raspberry Pi dan Deep Learning

Electrician, 2022

Intisari — Sistem ini dibuat atas dasar permasalahan yang terjadi dalam kehidupan sehari-hari, sa... more Intisari — Sistem ini dibuat atas dasar permasalahan yang terjadi dalam kehidupan sehari-hari, salah satunya yaitu tidak terpantaunya persediaan bahan makanan di lemari pendingin. Ketika dibutuhkan suatu bahan makanan dari lemari pendingin dan ternyata tidak ada, maka akan menjadi masalah. Oleh karena itu, dibuatlah sebuah sistem yang mampu mengidentifikasi objek makanan di dalam lemari pendingin. Masukan dari sistem ini berupa foto objek makanan yang diambil menggunakan Raspberry Pi Camera dan terhubung langsung dengan Raspberry Pi di dalam lemari pendingin. Setelah diproses dengan algoritma pembelajaran mesin, maka keluaran yang dihasilkan berupa identifikasi objek makanan yang terdapat di dalam lemari pendingin tersebut. Objek makanan yang diuji berupa pisang, mentimun, brokoli, dan jeruk. Dari hasil pengujian, terlihat bahwa program mengidentifikasi objek dengan benar pada objek pisang dan jeruk yang ditunjukkan dengan confidence level tertinggi sebesar 56,98% dan 45,88%. Identi...

Research paper thumbnail of Random-guided optimizer: a metaheuristic that shifts random search to guided search through iteration

Bulletin of Electrical Engineering and Informatics, Aug 1, 2024

This study offers a new swarm-based metaheuristic: random-guided optimizer (RGO). RGO has novel m... more This study offers a new swarm-based metaheuristic: random-guided optimizer (RGO). RGO has novel mechanics in shifting the random motion into a guided motion strategy during the iteration. In RGO, the iteration is divided into three equal size phases. In the first phase, the unit walks randomly inside the search space to tackle the local optimal problem earlier. In the second phase, each unit uses a unit selected randomly among the population as a reference in conducting the guided motion. In the third phase, each unit conducts guided motion toward or surpasses the best unit. Through simulation, RGO successfully finds the acceptable solution for 23 benchmark functions. Moreover, RGO successfully finds the global optimal solution for four functions: Branin, Goldstein-Price, Six Hump Camel, and Schwefel 2.22. RGO also outperforms slime mold algorithm (SMA), pelican optimization algorithm (POA), golden search optimizer (GSO), and northern goshawk optimizer (NGO) in solving 12, 20, 12, and 1 function consecutively. In the future, improvement can be made by transforming RGO into solid multiple-phase strategy without losing its identity as a metaheuristic with multiple strategy in every iteration.

Research paper thumbnail of Half mirror algorithm: a metaheuristic that hybridizes swarm intelligence and evolution-based system

International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering, Jun 1, 2024

This paper promotes a new metaheuristic called the half mirror algorithm (HMA). As its name sugge... more This paper promotes a new metaheuristic called the half mirror algorithm (HMA). As its name suggests, HMA offers a new kind of mirroring search. HMA is developed by hybridizing swarm intelligence and the evolution system. Swarm intelligence is adopted by constructing several autonomous agents called swarms. On the other hand, the evolution system is adopted using arithmetic crossover based on a particular reference called a mirror. Four mirrors are used in HMA: the best swarm member, a randomly selected swarm member, the central point of the space, and the corresponding swarm member. During the confrontative assessment, HMA is confronted with average and subtraction-based optimization (ASBO), total interaction algorithm (TIA), walrus optimization algorithm (WaOA), coati optimization algorithm (COA), and clouded leopard optimization (CLO). The result shows that HMA is superior to ASBO, TIA, WaOA, COA, and CLO in 20, 19, 19, 20, and 20 out of 23 functions, respectively. Moreover, HMA has found the global optimal of eight functions. It means the superiority of HMA occurs in almost entire functions. In the future, the mirroring search can be combined with the guided and neighborhood search to construct a more powerful metaheuristic.

Research paper thumbnail of Swarm flip-crossover algorithm: a new swarm-based metaheuristic enriched with a crossover strategy

International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering, Apr 1, 2024

A new swarm-based metaheuristic that is also enriched with the crossover technique called swarm f... more A new swarm-based metaheuristic that is also enriched with the crossover technique called swarm flip-crossover algorithm (SFCA) is introduced in this work. SFCA uses swarm intelligence as its primary technique and the crossover as its secondary one. It consists of three searches in every iteration. The swarm member walks toward the best member as the first search. The central point of the swarm becomes the target in the second search. There are two walks in the second search. The first walk is getting closer to the target, while the second is avoiding the target. The better result between these two walks becomes the candidate for the replacement. In the third search, the swarm member performs balance arithmetic crossover with the central point of the space or jumps to the opposite location within the area (flipping). The assessment is taken by confronting SFCA with five new metaheuristics: slime mold algorithm (SMA), golden search optimization (GSO), osprey optimization algorithm (OOA), coati optimization algorithm (COA), and walrus optimization algorithm (WaOA) in handling the set of 23 functions. The result shows that SFCA performs consecutively better than

Research paper thumbnail of Best-worst northern goshawk optimizer: a new stochastic optimization method

This study introduces a new metaheuristic method: the best-worst northern goshawk optimizer (BW-N... more This study introduces a new metaheuristic method: the best-worst northern goshawk optimizer (BW-NGO). This algorithm is an enhanced version of the northern goshawk optimizer (NGO). Every BW-NGO iteration consists of four phases. First, each agent advances toward the best agent and away from the worst agent. Second, each agent moves relatively to the agent selected at random. Third, each agent conducts a local search. Fourth, each agent traces the space at random. The first three phases are mandatory, while the fourth phase is optional. Simulation is performed to assess the performance of BW-NGO. In this simulation, BW-NGO is confronted with four algorithms: particle swarm optimization (PSO), pelican optimization algorithm (POA), golden search optimizer (GSO), and northern goshawk optimizer (NGO). The result exhibits that BW-NGO discovers an acceptable solution for the 23 benchmark functions. BW-NGO is better than PSO, POA, GSO, and NGO in consecutively optimizing 22, 20, 15, and 11 functions. BW-NGO can discover the global optimal solution for three functions.

Research paper thumbnail of WebGIS-Based Soil Fertility Information System in Cibodas Botanical Garden

Research paper thumbnail of Partial Leader Optimizer

International Journal on Advanced Science, Engineering and Information Technology

Research paper thumbnail of Perancangan Dan Implementasi Sistem Pengatur Suhu Dan Cahaya Berdasarkan Okupansi Pada Ruangan Kelas Berbasis Smart Building

eProceedings of Engineering, Aug 1, 2020

Abstrak Internet telah menjadi kebutuhan sehari-hari yang paling efektif sebagai media untuk beri... more Abstrak Internet telah menjadi kebutuhan sehari-hari yang paling efektif sebagai media untuk berinteraksi dan berkomunikasi dengan saling menukar data dan informasi yang ada di lingkungan sekitar kita. Salah satu pengaplikasian internet yang sudah banyak ada yaitu Internet of Things (IoT). Berkat Internet of Things, objek-objek tertentu di sekitar kita dapat berhubungan secara mandiri dengan dunia nyata dan tanpa campur tangan manusia secara langsung. Dalam penelitian ini penulis menggunakan IoT untuk mengatur kondisi lingkungan agar menjadi hemat energi di ruangan kelas. Ini adalah salah satu implementasi pada sistem smart building dengan menggunakan Internet of Things. Pada penelitian ini dibuat sistem yang berbasis smart building yang memiliki fungsi untuk mengatur suhu dan cahaya pada ruangan kelas dengan mengatur kipas, tirai dan lampu berdasarkan data sensor dan okupansi pada ruangan kelas. Pengendali yang digunakan pada penelitian ini adalah Mikrokontroler Arduino Uno. Adapun sensor-sensor yang digunakan yaitu sensor DHT11 sebagai pendeteksi suhu pada ruangan dan sensor BH1750 sebagai pendeteksi tingkat intensitas cahaya pada ruangan kelas. Dari hasil pengujian yang dilakukan, hasil rata-rata error pada BH1750 adalah sebesar 14% dan hasil rata-rata error DHT11 sebesar 4%. Sistem kontrol dapat berjalan sesuai dengan decision making dengan rata-rata delay eksekusi yaitu sebesar 5.6 detik dan akurasinya 100%. Kata kunci: Arduino Uno , BH1750, DHT11, Internet of Things, smart building. Abstract The internet has become the most effective daily necessity as a medium for interacting and communicating by exchanging data and information around us. One application of the internet that already exists is the Internet of Things (IoT). Thanks to the Internet of Things, certain objects around us can be connected independently to the real world and without direct human intervention. In this research, the authors used IoT to be deployed in the environment to increase the energy efficiency in the classroom. This is an implementation of a smart building system using the Internet of Things. In this research, a smart building based system has a function as a system that can regulate temperature and light in the classroom by controlling fan, curtains and lights based on sensor data and occupancy in the classroom. The controller used in this research is Arduino Uno Microcontroller. The sensors used are the DHT11 module as a temperature sensor in the room and the BH1750 module as a sensor for the level of light intensity in the classroom. From the results of tests conducted, the average error result of BH1750 is 14% and the average DHT11 error result is 4%. The control system can run according to decision making with an average execution delay of 5.6 seconds and 100% accuracy. Keywords: Arduino Uno , BH1750, DHT11, Internet of Things, smart building.

Research paper thumbnail of Prediction System on Electricity Consumption using Web-Based LSTM Algorithm

[CEPAT] Journal of Computer Engineering: Progress, Application and Technology

The technology development from year to year is increasing rapidly, especially in the electronics... more The technology development from year to year is increasing rapidly, especially in the electronics devices such as notebooks and smartphones. With the rapid development of technology, lifestyle habits have also changed. This can lead to an increase in the use of electrical energy. In addition, the negligence of electricity users in monitoring electricity usage at the place of the electricity meter also causes an increase in electrical energy. Monitoring the electricity meter in real time can limit the user from manage their electricity efficiently. This study aims to create a web-based electrical energy usage prediction system. This system can make it easier for users to manage and reduce waste of electrical energy. In the development of this system, it begins by collecting image data of remaining electricity which are processed manually into electrical energy consumption data. Then the data is pre-processed so that the data is clean and ready to use. The clean data is carried out by...

Research paper thumbnail of もの(IoT)のインターネット:IBM BlueMixを用いた自動車モニタリングシステム【Powered by NICT】

Research paper thumbnail of Random Forest Implementation in Prepaid Electric Meter Recognition

[CEPAT] Journal of Computer Engineering: Progress, Application and Technology

While prepaid electricity services provide better flexibility, it comes with an additional step f... more While prepaid electricity services provide better flexibility, it comes with an additional step for the customer. Instead of paying a monthly bill based on electric usage, a prepaid system requires customers to actively predict their electricity usage before they pay for the correct electricity value. This presents a challenge because Underestimating electricity usage may lead to a power outage. Therefore, a system that monitors electricity can be developed to address this issue. There are two approaches to developing an electric monitoring system: designing the electric meter equipped with monitoring features or designing an external capturing device to work with the current electric meter. The first approach is costly and requires a meter disassembly. Thus, in this paper, the second approach is used. By utilizing image processing and a Random Forest machine learning algorithm, a monitoring device can be developed to read the digital meter's display. Although it may affect perf...

Research paper thumbnail of Performance Analysis of Smart Irrigation System using Fuzzy Logic Method

2022 International Conference on Advanced Creative Networks and Intelligent Systems (ICACNIS)

Research paper thumbnail of Raspberry Pi: Mikrokontroler Mungil Yang Bisa Bisa

Research paper thumbnail of Sistem Manajemen Daya Rumah Cerdas Berbasiskan Raspberry Pi

Berkembangnya tingkat aktivitas dewasa ini menyebabkan manusia tidak memiliki banyak waktu untuk ... more Berkembangnya tingkat aktivitas dewasa ini menyebabkan manusia tidak memiliki banyak waktu untuk mengurusi banyak hal. Alhasil, hal-hal kecil seperti mematikan lampu, TV, AC, dan berbagai peralatan listrik lainnya sering terlupakan. Bagi pemilik rumah sewa, perilaku seperti ini bisa merugikan karena akan menyebabkan tagihan listrik yang tidak diinginkan. Dari survei yang dilakukan terhadap 10 koresponden yang terdiri dari pemilik dan penyewa rumah dengan tarif sewa yang bervariasi hingga Rp10.000.000,00 per tahun, didapatkan data peralatan listrik yang sering lupa dimatikan ketika tidak digunakan, seperti lampu, laptop, dan charger. Alasannya adalah lupa karena terburu-buru berangkat kerja/kuliah. Sedangkan pemilik rumah sewa kesulitan untuk mengetahui dan mengontrol penggunaan peralatan listrik yang digunakan oleh penyewa. Oleh karena itu, dibutuhkan suatu sistem yang mampu mengendalikan dan memonitor penggunaan peralatan listrik setiap saat. Dalam tugas akhir ini dibuat suatu sist...

Research paper thumbnail of Driver Supervisor System with Telegram Bot Platform

Computational Collective Intelligence, 2018

The biggest factor causes traffic accidents is human errors. Bad driving behavior could increase ... more The biggest factor causes traffic accidents is human errors. Bad driving behavior could increase the risk factor of accidents. Besides, it would lead to damage the vehicle quickly. The bad behavior could come from the less awareness of the driver or the lack of knowledge in the manner of the good and safe driving behavior. Therefore, in this research, a system is developed to know the driver’s behavior while he/she is driving, especially for car rental agencies. The system will work as a supervisor which notify the driver and a car rental administrator when the driver makes a mistake based on desired rules and tell him/her what should be done. The driver will receive supervisions through text messages over a Telegram Channel and voicemails over a speaker. Utilizing vehicle diagnostic data which are retrieved directly from the vehicle using the On-Board Diagnostic (OBD) II unit, the driver’s behavior can be analyzed in real time. OBD II is connected with Raspberry Pi 2 and then integrated with Telegram Bot platform, adopting Internet of Things (IoT) technology. The results of this research show the complete driving log based on selected parameters and supervision messages received by the driver related to him/her mistakes. The field test generated 7098 lines of data in a log file, which is 1145 of them exceed the limit. At least 71 supervision messages received by the driver within limit of 4 messages per minute. The calculated bandwidth used is 68.8 bytes per minute per message and it is recommended to use at least 12.1 MB monthly data plan to accommodate 175,200 supervision messages monthly. Stable Internet connection is required more than high speed Internet to keep the real-time connection alive.

Research paper thumbnail of Perancangan Dan Implementasi Sistem Pengatur Suhu Dan Cahaya Berdasarkan Okupansi Pada Ruangan Kelas Berbasis Smart Building

Abstrak Internet telah menjadi kebutuhan sehari-hari yang paling efektif sebagai media untuk beri... more Abstrak Internet telah menjadi kebutuhan sehari-hari yang paling efektif sebagai media untuk berinteraksi dan berkomunikasi dengan saling menukar data dan informasi yang ada di lingkungan sekitar kita. Salah satu pengaplikasian internet yang sudah banyak ada yaitu Internet of Things (IoT). Berkat Internet of Things, objek-objek tertentu di sekitar kita dapat berhubungan secara mandiri dengan dunia nyata dan tanpa campur tangan manusia secara langsung. Dalam penelitian ini penulis menggunakan IoT untuk mengatur kondisi lingkungan agar menjadi hemat energi di ruangan kelas. Ini adalah salah satu implementasi pada sistem smart building dengan menggunakan Internet of Things. Pada penelitian ini dibuat sistem yang berbasis smart building yang memiliki fungsi untuk mengatur suhu dan cahaya pada ruangan kelas dengan mengatur kipas, tirai dan lampu berdasarkan data sensor dan okupansi pada ruangan kelas. Pengendali yang digunakan pada penelitian ini adalah Mikrokontroler Arduino Uno. Adapun...

Research paper thumbnail of Applied Internet of Things (IoT): Car monitoring system using IBM BlueMix

2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2016

Wide application of Internet technology brings the technology Internet of Things (IoT), a technol... more Wide application of Internet technology brings the technology Internet of Things (IoT), a technology where any object can be on the internet and communicate with each other. This research will bring IoT technology to build the smart car system, which can be monitored and can actively report the condition to predict routine maintenance and provide information in order to achieve an efficient way of driving. Smart Car is realized by utilizing a standard On-Board Diagnostic (OBD) which is applied to the vehicles available at this time. OBD allows any vehicle parameters can be monitored electronically using the OBD Scanner tool. Monitored parameters will be uploaded to a cloud server utilizing IBM BlueMix applications and make the car as the IoT that can be analyzed in order to obtain information for predictive maintenance and monitoring of the Smart Car. The purpose of this research is to apply IoT in the smart car system so that car's predictive maintenance and monitoring functions can be realized. Big data analysist from the cloud would be informed to either driver, owners, or technician. This system is expected to be able to increase the efficiency of the car because of observed and supervised driving behavior which is able to reduce fuel consumption and exhaust emissions.

Research paper thumbnail of Pengembangan Sistem Deteksi Occupancy Menggunakan Computer Vision Untuk Smart Building Dan Automation

Abstrak Deteksi Occupancy dalam tugas akhir ini ditujukan untuk mendeteksi kehadiran orang dalam ... more Abstrak Deteksi Occupancy dalam tugas akhir ini ditujukan untuk mendeteksi kehadiran orang dalam ruangan kelas yang akan digunakan untuk mengontrol intensitas cahaya dan suhu dalam ruangan. Dalam Tugas Akhir ini dibahas tentang pengembangan sistem deteksi occupancy, khususnya deteksi kehadiran manusia dalam ruangan kelas dengan menggunakan computer vision. Deep learning digunakan untuk memprediksi kehadiran manusia dari data citra atau video. Data yang didapat akan diolah, lalu keluarannya akan diteruskan ke kontroler untuk mengontrol kipas angin, lampu, dan tirai pada ruangan kelas. Pengembangan sistem deteksi okupansi ini bertujuan untuk meningkatkan efisiensi penggunaan energi pada ruangan kelas dengan mengontrol peralatan elektronik di dalam kelas dengan berdasarkan pada hasil deteksi okupansi. Dari penelitian ini didapatkan hasil akurasi rata-rata dalam mendeteksi orang sebesar 83.45%. Kata Kunci: Computer Vision, Deep Learning, IoT, Machine Learning, Occupancy Abstract Occupan...

Research paper thumbnail of Perancangan Aplikasi Deteksi Sifat Manusia Menggunakan Garis Tangan Dengan Gray-level Co-occurrence Matrix (glcm) Pada Citra Berbasis Android

Abstrak Deteksi melalui pola garis telapak tangan manusia (palmistry) dapat dilakukan dengan muda... more Abstrak Deteksi melalui pola garis telapak tangan manusia (palmistry) dapat dilakukan dengan mudah apabila dibantu dengan aplikasi yang dirancang khusus untuk melakukan tugas tersebut. Input yang diperlukan berupa gambar telapak tangan objek menggunakan smartphone berbasis android.Kemudian system akan melakukan pencocokkan pola garis tangan dari inputan dengan data terdapat pada database. Output dari system adalah berupa class terdekat atau class yang sesuai dari garis tangan pengguna ingin dikenali hasil dari analisa pola garis tangan pengguna dengan pola garis tangan yang ada di database berupa karakter dari pemilik pola garis tangan tersebut. Kata Kunci: Ramalan Pola Garis Telapak Tangan, GRAY-LEVEL COOCCURRENCE MATRIX (GLCM), Sistem Pakar Abstract Detection through palmistry can be done easily when aided by an application specifically designed to do the task. The required input is in the form of an object palm using an Android-based smartphone. Then the system will match the han...

Research paper thumbnail of Identifikasi Persediaan Makanan di dalam Lemari Pendingin Berbasis Raspberry Pi dan Deep Learning

Electrician, 2022

Intisari — Sistem ini dibuat atas dasar permasalahan yang terjadi dalam kehidupan sehari-hari, sa... more Intisari — Sistem ini dibuat atas dasar permasalahan yang terjadi dalam kehidupan sehari-hari, salah satunya yaitu tidak terpantaunya persediaan bahan makanan di lemari pendingin. Ketika dibutuhkan suatu bahan makanan dari lemari pendingin dan ternyata tidak ada, maka akan menjadi masalah. Oleh karena itu, dibuatlah sebuah sistem yang mampu mengidentifikasi objek makanan di dalam lemari pendingin. Masukan dari sistem ini berupa foto objek makanan yang diambil menggunakan Raspberry Pi Camera dan terhubung langsung dengan Raspberry Pi di dalam lemari pendingin. Setelah diproses dengan algoritma pembelajaran mesin, maka keluaran yang dihasilkan berupa identifikasi objek makanan yang terdapat di dalam lemari pendingin tersebut. Objek makanan yang diuji berupa pisang, mentimun, brokoli, dan jeruk. Dari hasil pengujian, terlihat bahwa program mengidentifikasi objek dengan benar pada objek pisang dan jeruk yang ditunjukkan dengan confidence level tertinggi sebesar 56,98% dan 45,88%. Identi...