Filippo Iodice - Academia.edu (original) (raw)
Papers by Filippo Iodice
Cities represent more than 50% of global population and are the main responsible of energy consum... more Cities represent more than 50% of global population and are the main responsible of energy consumption in the world, accounting for more than 70% of CO\ub2 emissions deriving especially from energy and transportation sectors (Global Covenant of Mayors, 018). At the same time, also cities are negatively affected by Climate Change in terms of infrastructure, economy (e.g. agriculture), public services, urban planning and food security, all crucial dimensions for sustainable development. In this scenario, urban planners and policy makers are called to identify innovative solution against crucial challenges related to the evolution of city and environment planning and management. Based on the City Sensing [1, pp. 10-13] approach, the aim of this thesis is to identify innovative technological approach that can support citizens to monitor the level the air pollutants and carbon emissions through the interrelation of Copernicus satellites, big data and cognitive techniques, in order to imp...
Soils are complex ecosystems. They play a key role in providing sustainable life on Earth, meetin... more Soils are complex ecosystems. They play a key role in providing sustainable life on Earth, meeting the needs of humans and regulating several environmental processes. The United Nation’s 2030 Agenda for Sustainable Development and the related 17 Goals include a commitment to the preservation of soil quality. However, the adopted indicators lack the measurement of a key nutrient: nitrogen. The aim of this paper is to call for the integration of two nitrogen indexes to measure soil quality and to present a worked example of geospatial technologies applied to nitrogen monitoring, aiding in farmland management and decisionmaking. Due to their inherent time/location precision, remote sensing data can provide insight in predicting the impact of agricultural practices and optimise their application.
Journal of Quantitative Spectroscopy and Radiative Transfer, 2021
Abstract In this work we have developed a novel algorithm for the determination of the total ozon... more Abstract In this work we have developed a novel algorithm for the determination of the total ozone column (TOC) from spectral top-of-atmosphere solar backscattered light measurements in the spectral range 400-1020nm performed by the ESA Ocean and Land Colour Instrument on board Sentinel -3A, B. The algorithm can be applied for scenes over bright underlying surfaces including clouds, snow and ice (e.g., over Antarctica), where the ozone absorption feature in the Chappuis absorption band is clearly seen in registered top-of-atmosphere backscattered light spectra . The technique provides the possibility to perform the total ozone measurements on the spatial scale 300m, which can not be reached by other modern spaceborne measurements, aimed at total ozone observations such as TROPOMI, OMI, GOME-2, OMPS and other.
<p>The total ozone column (TOC) is retrieved using multiple optical satelli... more <p>The total ozone column (TOC) is retrieved using multiple optical satellite instrumentation (including TOMS, OMI, TROPOMI, GOME, GOME-2, and SCIAMACHY, to name a few). The spatial resolution of total ozone satellite measurements is quite low (e.g., 7x3.5km for TROPOMI, 13x24km for OMI, and 30x60km for SCIAMACHY). In some cases (say, close to the ozone hole boundary) it is of importance to have information on the total ozone at a higher spatial resolution. In this work we propose the use of multiple optical instruments performing the measurements in the ozone Chappuis ozone bands (400-650nm) for the total ozone column determination. This makes it possible to extend the number of instruments, which can be used for the total ozone determination (say, also using current/historic measurements by MODIS/Aqua&Terra, S-GLI/SCOM-C, VIIRS/Suomi-NPP, MSI/S-2, OLCI/S-3, MERIS/ENVISAT). In particular, MERIS and SCIAMACHY have been operated from the same satellite platform and had similar swaths (960km for SCIAMACHY and 1150km for MERIS). This means the method of total ozone retrieval based on combination of SCIAMACHY (30x60km) and MERIS (0.3x0.3km) observations over highly reflective ground (say, in Antarctica, where the ozone hole is located) is of value. The total ozone retrievals using Chappuis ozone bands is based on the fact that the top-of-atmosphere reflectance observed over a highly reflective ground (say, snow) has a minimum in the visible located around 600nm. This feature is due to due to the absorption of light by the atmospheric ozone (Gorshelev et al., 2014). The contribution of both ground and atmospheric light scattering to the top-of-atmosphere (TOA) does not have extrema in the vicinity of 600nm. Therefore, there is a possibility to remove both atmospheric and ground light scattering effects to the TOA reflectance over highly reflective underlying surface and derive the atmospheric transmittance due to the ozone absorption effects, which can be used for the TOC determination. Such a method has been explored using MERIS/ENVISAT (Jolivet et al., 2016) and OLCI/S-3 (Kokhanovsky et al., 2020) in the past. This paper is aimed at further improvement of the technique as applied to OLCI/S-3A,B. We have performed intercomparisons of OLCI TOC retrievals with TOC derived from ground and other satellite (e.g., OMI, TROPOMI, GOME-2) measurements. The TOC retrievals using OLCI have been performed over entire Antarctica allowing the generation of TOC at various spatial resolutions including standard 1x1 degree resolution.</p><p>Gorshelev, V., et al., 2014: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014.</p><p>Jolivet D., et al., 2016: TORMS : total ozone retrieval from MERIS in view of application to Sentinel-3,  Living Planet Symposium, Proceedings of the conference held 9-13 May 2016 in Prague, Czech Republic. Edited by L. Ouwehand. ESA-SP Volume 740, ISBN: 978-92-9221-305-3, p.358</p><p>Kokhanovsky, A. A., et al., 2020: Retrieval of total ozone over Antarctica using Sentinel -3 Ocean and Land Colour Instrument, JQSRT, 2020, 251, https://doi.org/10.1016/j.jqsrt.2020.107045.</p><p> </p>
The monitoring of rivers by satellite is an up-to-date subject in hydrological studies as confirm... more The monitoring of rivers by satellite is an up-to-date subject in hydrological studies as confirmed by the interest of space agencies to finance specific missions that respond to the quantification of surface water flows. We address the problem by using multi-spectral sensors, in the near-infrared (NIR) band, correlating the reflectance ratio between a dry and a wet pixel extracted from a time series of images, the C/M ratio, with five river flow-related variables: water level, river discharge, flow area, mean flow velocity and surface width. The innovative aspect of this study is the use of the Ocean and Land Colour Instrument (OLCI) on board Sentinel-3 satellites, compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) used in previous studies. Our results show that the C/M ratio from OLCI and MODIS is more correlated with the mean flow velocity than with other variables. To improve the number of observations, OLCI and MODIS products are combined into multi-mission t...
Cities represent more than 50% of global population and are the main responsible of energy consum... more Cities represent more than 50% of global population and are the main responsible of energy consumption in the world, accounting for more than 70% of CO\ub2 emissions deriving especially from energy and transportation sectors (Global Covenant of Mayors, 018). At the same time, also cities are negatively affected by Climate Change in terms of infrastructure, economy (e.g. agriculture), public services, urban planning and food security, all crucial dimensions for sustainable development. In this scenario, urban planners and policy makers are called to identify innovative solution against crucial challenges related to the evolution of city and environment planning and management. Based on the City Sensing [1, pp. 10-13] approach, the aim of this thesis is to identify innovative technological approach that can support citizens to monitor the level the air pollutants and carbon emissions through the interrelation of Copernicus satellites, big data and cognitive techniques, in order to imp...
Soils are complex ecosystems. They play a key role in providing sustainable life on Earth, meetin... more Soils are complex ecosystems. They play a key role in providing sustainable life on Earth, meeting the needs of humans and regulating several environmental processes. The United Nation’s 2030 Agenda for Sustainable Development and the related 17 Goals include a commitment to the preservation of soil quality. However, the adopted indicators lack the measurement of a key nutrient: nitrogen. The aim of this paper is to call for the integration of two nitrogen indexes to measure soil quality and to present a worked example of geospatial technologies applied to nitrogen monitoring, aiding in farmland management and decisionmaking. Due to their inherent time/location precision, remote sensing data can provide insight in predicting the impact of agricultural practices and optimise their application.
Journal of Quantitative Spectroscopy and Radiative Transfer, 2021
Abstract In this work we have developed a novel algorithm for the determination of the total ozon... more Abstract In this work we have developed a novel algorithm for the determination of the total ozone column (TOC) from spectral top-of-atmosphere solar backscattered light measurements in the spectral range 400-1020nm performed by the ESA Ocean and Land Colour Instrument on board Sentinel -3A, B. The algorithm can be applied for scenes over bright underlying surfaces including clouds, snow and ice (e.g., over Antarctica), where the ozone absorption feature in the Chappuis absorption band is clearly seen in registered top-of-atmosphere backscattered light spectra . The technique provides the possibility to perform the total ozone measurements on the spatial scale 300m, which can not be reached by other modern spaceborne measurements, aimed at total ozone observations such as TROPOMI, OMI, GOME-2, OMPS and other.
<p>The total ozone column (TOC) is retrieved using multiple optical satelli... more <p>The total ozone column (TOC) is retrieved using multiple optical satellite instrumentation (including TOMS, OMI, TROPOMI, GOME, GOME-2, and SCIAMACHY, to name a few). The spatial resolution of total ozone satellite measurements is quite low (e.g., 7x3.5km for TROPOMI, 13x24km for OMI, and 30x60km for SCIAMACHY). In some cases (say, close to the ozone hole boundary) it is of importance to have information on the total ozone at a higher spatial resolution. In this work we propose the use of multiple optical instruments performing the measurements in the ozone Chappuis ozone bands (400-650nm) for the total ozone column determination. This makes it possible to extend the number of instruments, which can be used for the total ozone determination (say, also using current/historic measurements by MODIS/Aqua&Terra, S-GLI/SCOM-C, VIIRS/Suomi-NPP, MSI/S-2, OLCI/S-3, MERIS/ENVISAT). In particular, MERIS and SCIAMACHY have been operated from the same satellite platform and had similar swaths (960km for SCIAMACHY and 1150km for MERIS). This means the method of total ozone retrieval based on combination of SCIAMACHY (30x60km) and MERIS (0.3x0.3km) observations over highly reflective ground (say, in Antarctica, where the ozone hole is located) is of value. The total ozone retrievals using Chappuis ozone bands is based on the fact that the top-of-atmosphere reflectance observed over a highly reflective ground (say, snow) has a minimum in the visible located around 600nm. This feature is due to due to the absorption of light by the atmospheric ozone (Gorshelev et al., 2014). The contribution of both ground and atmospheric light scattering to the top-of-atmosphere (TOA) does not have extrema in the vicinity of 600nm. Therefore, there is a possibility to remove both atmospheric and ground light scattering effects to the TOA reflectance over highly reflective underlying surface and derive the atmospheric transmittance due to the ozone absorption effects, which can be used for the TOC determination. Such a method has been explored using MERIS/ENVISAT (Jolivet et al., 2016) and OLCI/S-3 (Kokhanovsky et al., 2020) in the past. This paper is aimed at further improvement of the technique as applied to OLCI/S-3A,B. We have performed intercomparisons of OLCI TOC retrievals with TOC derived from ground and other satellite (e.g., OMI, TROPOMI, GOME-2) measurements. The TOC retrievals using OLCI have been performed over entire Antarctica allowing the generation of TOC at various spatial resolutions including standard 1x1 degree resolution.</p><p>Gorshelev, V., et al., 2014: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014.</p><p>Jolivet D., et al., 2016: TORMS : total ozone retrieval from MERIS in view of application to Sentinel-3,  Living Planet Symposium, Proceedings of the conference held 9-13 May 2016 in Prague, Czech Republic. Edited by L. Ouwehand. ESA-SP Volume 740, ISBN: 978-92-9221-305-3, p.358</p><p>Kokhanovsky, A. A., et al., 2020: Retrieval of total ozone over Antarctica using Sentinel -3 Ocean and Land Colour Instrument, JQSRT, 2020, 251, https://doi.org/10.1016/j.jqsrt.2020.107045.</p><p> </p>
The monitoring of rivers by satellite is an up-to-date subject in hydrological studies as confirm... more The monitoring of rivers by satellite is an up-to-date subject in hydrological studies as confirmed by the interest of space agencies to finance specific missions that respond to the quantification of surface water flows. We address the problem by using multi-spectral sensors, in the near-infrared (NIR) band, correlating the reflectance ratio between a dry and a wet pixel extracted from a time series of images, the C/M ratio, with five river flow-related variables: water level, river discharge, flow area, mean flow velocity and surface width. The innovative aspect of this study is the use of the Ocean and Land Colour Instrument (OLCI) on board Sentinel-3 satellites, compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) used in previous studies. Our results show that the C/M ratio from OLCI and MODIS is more correlated with the mean flow velocity than with other variables. To improve the number of observations, OLCI and MODIS products are combined into multi-mission t...