Frank Desiere - Academia.edu (original) (raw)
Papers by Frank Desiere
Microbiology (Reading, England), 2004
The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of... more The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of Lactobacillus plantarum (3.3 Mb) and Lactobacillus johnsonii (2.0 Mb). L. johnsonii is predominantly found in the gastrointestinal tract, while L. plantarum is also found on plants and plant-derived material, and is used in a variety of industrial fermentations. The L. plantarum and L. johnsonii chromosomes have only 28 regions with conservation of gene order, totalling about 0.75 Mb; these regions are not co-linear, indicating major chromosomal rearrangements. Metabolic reconstruction indicates many differences between L. johnsonii and L. plantarum: numerous enzymes involved in sugar metabolism and in biosynthesis of amino acids, nucleotides, fatty acids and cofactors are lacking in L. johnsonii. Major differences were seen in the number and types of putative extracellular proteins, which are of interest because of their possible role in host-microbe interactions. The differences betwe...
Journal of virology, 1999
The comparative analysis of five completely sequenced Streptococcus thermophilus bacteriophage ge... more The comparative analysis of five completely sequenced Streptococcus thermophilus bacteriophage genomes demonstrated that their diversification was achieved by a combination of DNA recombination events and an accumulation of point mutations. The five phages included lytic and temperate phages, both pac site and cos site, from three distinct geographical areas. The units of genetic exchange were either large, comprising the entire morphogenesis gene cluster, excluding the putative tail fiber genes, or small, consisting of one or maximally two genes or even segments of a gene. Many indels were flanked by DNA repeats. Differences in a single putative tail fiber gene correlated with the host ranges of the phages. The predicted tail fiber protein consisted of highly conserved domains containing conspicuous glycine repeats interspersed with highly variable domains. As in the T-even coliphage adhesins, the glycine-containing domains were recombinational hot spots. Downstream of a highly con...
Virus genes, 1998
Bacteriophages attacking Streptococcus thermophilus, a lactic acid bacterium used in milk ferment... more Bacteriophages attacking Streptococcus thermophilus, a lactic acid bacterium used in milk fermentation, are a threat to the dairy industry. These small isometric-headed phages possess double-stranded DNA genomes of 31 to 45 kb. Yoghurt-derived phages exhibit a limited degree of variability, as defined by restriction pattern and host range, while a large diversity of phage types have been isolated from cheese factories. Despite this diversity all S. thermophilus phages, virulent and temperate, belong to a single DNA homology group. Several mechanisms appear to create genetic variability in this phage group. Site-specific deletions, one type possibly mediated by a viral recombinase/integrase, which transformed a temperate into a virulent phage, were observed. Recombination as a result of superinfection of a lysogenic host has been reported. Comparative DNA sequencing identified up to 10% sequence diversity due to point mutations. Genome sequencing of the prototype temperate phage phi ...
Applied and environmental microbiology, 1998
Mycobacterium sp. strain HL 4-NT-1, isolated from a mixed soil sample from the Stuttgart area, ut... more Mycobacterium sp. strain HL 4-NT-1, isolated from a mixed soil sample from the Stuttgart area, utilized 4-nitrotoluene as the sole source of nitrogen, carbon, and energy. Under aerobic conditions, resting cells of the Mycobacterium strain metabolized 4-nitrotoluene with concomitant release of small amounts of ammonia; under anaerobic conditions, 4-nitrotoluene was completely converted to 6-amino-m-cresol. 4-Hydroxylaminotoluene was converted to 6-amino-m-cresol by cell extracts and thus could be confirmed as the initial metabolite in the degradative pathway. This enzymatic equivalent to the acid-catalyzed Bamberger rearrangement requires neither cofactors nor oxygen. In the same crucial enzymatic step, the homologous substrate hydroxylaminobenzene was rearranged to 2-aminophenol. Abiotic oxidative dimerization of 6-amino-m-cresol, observed during growth of the Mycobacterium strain, yielded a yellow dihydrophenoxazinone. Another yellow metabolite (lambda max, 385 nm) was tentatively ...
Applied and environmental microbiology, 1997
A mozzarella cheese factory using an undefined, milk-derived Streptococcus thermophilus starter s... more A mozzarella cheese factory using an undefined, milk-derived Streptococcus thermophilus starter system was monitored longitudinally for 2 years to determine whether the diversity of the resident bacteriophage population arose from environmental sources or from genetic changes in the resident phage in the factory. The two hypotheses led to different predictions about the genetic diversity of the phages. With respect to host range, 12 distinct phage types were observed. With two exceptions, phages belonging to different lytic groups showed clearly distinct restriction patterns and multiple isolates of phages showing the same host range exhibited identical or highly related restriction patterns. Sequencing studies in a conserved region of the phage genome revealed no point mutations in multiple isolates of the same phage type, while up to 12% nucleotide sequence diversity was observed between the different phage types. This diversity is as large as that between the most different seque...
Virology, 1997
Phage fSfi21, the only temperate Streptococcus thermophilus phage from our phage collection, show... more Phage fSfi21, the only temperate Streptococcus thermophilus phage from our phage collection, showed extensive DNA homology with virulent phages from lytic group I. Southern blot hybridizations demonstrated that the fSfi21-specific DNA was clustered in an approximately 6.6-kb-long region, the putative lysogeny module. Sequence analysis and database research identified an integrase within this module; orf 203 with homology to an anonymous orf 258 from the temperate lactococcal phage BK5-T; orf 127 and orf 122 with weak homology to the N-and C-terminal parts, respectively, of the cIlike repressor from lactococcal phages Tuc2009 and BK5-T; orf 75 with homology to a repressor protein from lambdoid phage 434 and an anti-repressor ant with homology to phage P1. The molecular arrangement of the predicted orfs in phage fSfi21 was very similar to that of the lactococcal phage BK5-T. The transition from fSfi21-specific DNA into DNA shared with virulent phages was abrupt and flanked at one side by notable DNA repeats. Sequence analysis identified a holin protein to the left of the lysogeny module. A site-specific deletion of 2.4 kb, which reproducibly transformed fSfi21 into a lytic phage, was localized in the lysogeny module. It was flanked at both sides by conspicuous DNA repeats. One repeat region reflected the DNA around the attP site, while the other reflected the putative genetic switch region between repressor and anti-repressor genes. S. thermophilus host Sfi1 transformed with a plasmid containing int and orf 203 showed resistance to superinfection by heterologous phages, but not by the homologous fSfi21. Part of the int gene could be deleted without loss of this activity, while a deletion in orf 203 resulted in loss of the phage resistance. We speculate on the possibility of a bipartite immunity system for the control of lysogeny in fSfi21. ᭧ 1997 Academic Press
Virology, 1998
The structural gene cluster and the lysis module from lytic group II Streptococcus thermophilus b... more The structural gene cluster and the lysis module from lytic group II Streptococcus thermophilus bacteriophage Sfi11 was compared to the corresponding region from other Siphoviridae. The analysis revealed a hierarchy of relatedness. Sfi11 differed from the temperate S. thermophilus bacteriophage O1205 by about 10% at the nucleotide level. The majority of the changes were point mutations, mainly at the third base position. Only a single gene (orf 695) differed substantially between the two phages. Over the putative minor tail and lysis genes, Sfi11 and the lytic group I S. thermophilus Sfi19 shared regions with variable degrees of similarity. Orf 1291 from Sfi19 was replaced by four genes in Sfi11, two of which (orf 1000 and orf 695) showed a complicated pattern of similarity and nonsimilarity compared with Sfi19. The predicted orf 695 gp resembles the receptor-recognizing protein of T-even coliphages in its organization, but not its sequence. No sequence similarity was detected between Sfi11 and Sfi19 in the region covering the major head and tail genes. Comparison of the structural gene map of Sfi11 with that of Siphoviridae from gram-positive and -negative bacterial hosts revealed a common genomic organization. Sequence similarity was only found between Sfi11 and Siphoviridae from gram-positive hosts and correlated with the evolutionary distance between the bacterial hosts. Our data are compatible with the hypothesis that the structural gene operon from Siphoviridae of the low GϩC group of gram-positive bacteria is derived from a common ancestor.
Virology, 1998
Comparative sequence analysis of 40% of the genomes from two prototype Streptococcus thermophilus... more Comparative sequence analysis of 40% of the genomes from two prototype Streptococcus thermophilus bacteriophages (lytic group I phage Sfi19 and the cos site containing temperate phage Sfi21) suggested two processes in the evolution of their genomes. In a first evolutionarily distant phase the basic genome structure was apparently constituted by modular exchanges. Over the 17-kb-long DNA segment analyzed in the present report, we observed clusters of genes with similarity to genes from Leuconostoc oenos phage L10, Lactococcus lactis phage BK5-T, and Streptococcus pneumoniae phage Dp-1. A chimeric protein was predicted for orf 1291 which showed similarity to both phage BK5-T and phage Dp-1 proteins. The very large orf 1626 gene product showed similarity to two adjacent genes from the Lactobacillus delbrueckii phage LL-H and further phage proteins (Lactococcus lactis, Bacillus subtilis). The similarities were localized to distinct parts of this apparently multifunctional protein. The putative Sfi19 lysin showed similarity to both lysins of phages and cellular enzymes. In a second, evolutionarily more recent, phase the S. thermophilus phage genomes apparently diversified by point mutations and small deletions/insertions. Over the investigated 17-kb DNA region Sfi19 differed from Sfi21 by 10% base pair changes, the majority of which were point mutations (mainly at the third codon position), while a third of the base pair differences were contributed by small deletions/insertions. The base pair changes were unevenly distributed: Over the Leuconostoc phagerelated DNA the change rate was high, while over the Lactococcus and S. pneumoniae phage-related DNA the change rate was low. We speculate that the degree of base pair change could provide relative time scales for the modular exchange reactions observed in S. thermophilus phages.
Soil & Environment, 1995
... Figure 3 shows the load of all found contaminants in the soil slurry during the anaerobic tre... more ... Figure 3 shows the load of all found contaminants in the soil slurry during the anaerobic treatment. Given ... Table 1. Total Amount of Soil Contaminants before and after Biological Anaerobic/Aerobic Treatment at Technical Scale. contaminant, ...
Virology, 2001
Lactococcus lactis phage BK5-T and Streptococcus thermophilus phage Sfi21, two cos-site temperate... more Lactococcus lactis phage BK5-T and Streptococcus thermophilus phage Sfi21, two cos-site temperate Siphoviridae with 40-kb genomes, share an identical genome organization, sequence similarity at the amino acid level over about half of their genomes, and nucleotide sequence identity of 60% over the DNA packaging and head morphogenesis modules. Siphoviridae with similarly organized genomes and substantial protein sequence similarity were identified in several genera of low-GC-content Gram-positive bacteria. These phages demonstrated a gradient of relatedness ranging from nucleotide sequence similarity to protein sequence similarity to gene map similarity over the DNA packaging and head morphogenesis modules. Interestingly, the degree of relatedness was correlated with the evolutionary distance separating their bacterial hosts. These observations suggest elements of vertical evolution in phages. The structural genes from BK5-T shared no sequence relationships with corresponding genes/proteins from lactococcal phages belonging to distinct lactococcal phage species, including phage sk1 (phage species 936) that showed a closely related gene map. Despite a clearly distinct genome organization, lactococcal phages sk1 and c2 showed nine sequence-related proteins. Over the early gene cluster phage BK5-T shared nine regions of high nucleotide sequence similarity, covering at most two adjacent genes, with lactococcal phage r1t (phage species P335). Over the structural genes, the closest relatives of phage r1t were not lactococcal phages belonging to other phage species, but Siphoviridae from Mycobacteria (high-GC-content Gram-positive bacteria). Evidence for recent horizontal gene transfer between distinct phage species was obtained for dairy phages, but these transfers were limited to phages infecting the same bacterial host species.
Antonie van Leeuwenhoek, 2002
Comparative phage genomics has become possible due to the availability of more than 100 complete ... more Comparative phage genomics has become possible due to the availability of more than 100 complete phage genome sequences and the development of powerful bioinformatics tools. This technology, profiting from classical molecular-biology knowledge, has opened avenues of research for topics, which were difficult to address in the past. Now, it is possible to retrace part of the evolutionary history of phage modules by comparative genomics. The diagnosis of relatedness is hereby not uniquely based on sequence similarity alone, but includes topological considerations of genome organization. Detailed transcription maps have allowed in silico predictions of genome organization to be verified and refined. This comparative knowledge is providing the basis for a new taxonomic classification concept for bacteriophages infecting low G + C-content Gram-positive bacteria based on the genetic organization of the structural gene module. An Sfi21-like and an Sfi11-like genus of Siphoviridae is propose...
Proceedings of the National Academy of Sciences of the United States of America, 2005
Bifidobacteria are Gram-positive prokaryotes that naturally colonize the human gastrointestinal t... more Bifidobacteria are Gram-positive prokaryotes that naturally colonize the human gastrointestinal tract (GIT) and vagina. Although not numerically dominant in the complex intestinal microflora, they are considered as key commensals that promote a healthy GIT. We determined the 2.26-Mb genome sequence of an infant-derived strain of Bifidobacterium longum, and identified 1,730 possible coding sequences organized in a 60%-GC circular chromosome. Bioinformatic analysis revealed several physiological traits that could partially explain the successful adaptation of this bacteria to the colon. An unexpectedly large number of the predicted proteins appeared to be specialized for catabolism of a variety of oligosaccharides, some possibly released by rare or novel glycosyl hydrolases acting on ''nondigestible'' plant polymers or host-derived glycoproteins and glycoconjugates. This ability to scavenge from a large variety of nutrients likely contributes to the competitiveness and persistence of bifidobacteria in the colon. Many genes for oligosaccharide metabolism were found in self-regulated modules that appear to have arisen in part from gene duplication or horizontal acquisition. Complete pathways for all amino acids, nucleotides, and some key vitamins were identified; however, routes for Asp and Cys were atypical. More importantly, genome analysis provided insights into the reciprocal interactions of bifidobacteria with their hosts. We identified polypeptides that showed homology to most major proteins needed for production of glycoprotein-binding fimbriae, structures that could possibly be important for adhesion and persistence in the GIT. We also found a eukaryotic-type serine protease inhibitor (serpin) possibly involved in the reported immunomodulatory activity of bifidobacteria.
Genome Biology 2006, 7:R106 comment reviews reports deposited research refereed research interact... more Genome Biology 2006, 7:R106 comment reviews reports deposited research refereed research interactions information
Genome biology, 2005
A crucial aim upon the completion of the human genome is the verification and functional annotati... more A crucial aim upon the completion of the human genome is the verification and functional annotation of all predicted genes and their protein products. Here we describe the mapping of peptides derived from accurate interpretations of protein tandem mass spectrometry (MS) data to eukaryotic genomes and the generation of an expandable resource for integration of data from many diverse proteomics experiments. Furthermore, we demonstrate that peptide identifications obtained from high-throughput proteomics can be integrated on a large scale with the human genome. This resource could serve as an expandable repository for MS-derived proteome information.
Virology, 1999
The temperate Streptococcus thermophilus bacteriophage Sfi21 possesses 15-nucleotide-long cohesiv... more The temperate Streptococcus thermophilus bacteriophage Sfi21 possesses 15-nucleotide-long cohesive ends with a 3Ј overhang that reconstitutes a cos-site with twofold hyphenated rotational symmetry. Over the DNA packaging, head and tail morphogenesis modules, the Sfi21 sequence predicts a gene map that is strikingly similar to that of lambdoid coliphages in the absence of any sequence similarity. A nearly one to one gene correlation was found with the phage lambda genes Nu1 to H, except for gene B-to-E complex, where the Sfi21 map resembled that of coliphage HK97. The similarity between Sfi21 and HK97 was striking: both major head proteins showed an N-terminal coiled-coil structure, the mature major head proteins started at amino acid positions 105 and 104, respectively, and both major head genes were preceded by genes encoding a possible protease and portal protein. The purported Sfi21 protease is the first viral member of the ClpP protease family. The prediction of Sfi21 gene functions by reference to the gene map of intensively investigated coliphages was experimentally confirmed for the major head and tail gene. Phage Sfi21 shows nucleotide sequence similarity with Lactococcus phage BK5-T and a lactococcal prophage and amino acid sequence similarity with the Lactobacillus phage A2 and the Staphylococcus phage PVL. PVL is a missing link that connects the portal proteins from Sfi21 and HK97 with respect to sequence similarity. These observations and database searches, which demonstrate sequence similarity between proteins of phage from gram-positive bacteria, proteobacteria, and Archaea, constrain models of phage evolution.
Virology, 1999
The virulent cos-site Streptococcus thermophilus bacteriophage Sfi19 has a 37,392-bp-long genome ... more The virulent cos-site Streptococcus thermophilus bacteriophage Sfi19 has a 37,392-bp-long genome consisting of 44 open reading frames all encoded on the same DNA strand. The genome of the temperate cos-site S. thermophilus phage Sfi21 is 3.3 kb longer (40,740 bp, 53 orfs). Both genomes are very similarly organized and differed mainly by gene deletion and DNA rearrangement events in the lysogeny module; gene replacement, duplication, and deletion events in the DNA replication module, and numerous point mutations. The level of point mutations varied from Ͻ1% (lysis and DNA replication modules) to Ͼ15% (DNA packaging and head morphogenesis modules). A dotplot analysis showed nearly a straight line over the left 25 kb of their genomes. Over the right genome half, a more variable dotplot pattern was observed. The entire lysogeny module from Sfi21 comprising 12 genes was replaced by 7 orfs in Sfi19, six showed similarity with genes from temperate pac-site S. thermophilus phages. None of the genes implicated in the establishment of the lysogenic state (integrase, superinfection immunity, repressor) or remnants of it were conserved in Sfi19, while a Cro-like repressor was detected. Downstream of the highly conserved DNA replication module 11 and 13 orfs were found in Sfi19 and Sfi21, respectively: Two orfs from Sfi21 were replaced by a different gene and a duplication of the phage origin of replication in Sfi19; a further orf was only found in Sfi21. All other orfs from this region, which included a second putative phage repressor, were closely related between both phages. Two noncoding regions of Sfi19 showed sequence similarity to pST1, a small cryptic plasmid of S. thermophilus.
Virology, 2001
The genome of the highly pathogenic M1 serotype Streptococcus pyogenes isolate SF370 contains eig... more The genome of the highly pathogenic M1 serotype Streptococcus pyogenes isolate SF370 contains eight prophage elements. Only prophage SF370.1 could be induced by mitomycin C treatment. Prophage SF370.3 showed a 33.5-kb-long genome that closely resembled the genome organization of the cos-site temperate Siphovirus r1t infecting the dairy bacterium Lactococcus lactis. The two-phage genomes shared between 60 and 70% nucleotide sequence identity over the DNA packaging, head and tail genes. Analysis of the SF370.3 genome revealed mutations in the replisome organizer gene that may prevent the induction of the prophage. The mutated phage replication gene was closely related to a virulence marker identified in recently emerged M3 serotype S. pyogenes strains in Japan. This observation suggests that prophage genes confer selective advantage to the lysogenic host. SF370.3 encodes a hyaluronidase and a DNase that may facilitate the spreading of S. pyogenes through tissue planes of its human host. Prophage SF370.2 showed a 43-kb-long genome that closely resembled the genome organization of pac-site temperate Siphoviridae infecting the dairy bacteria S. thermophilus and L. lactis. Over part of the structural genes, the similarity between SF370.2 and S. thermophilus phage O1205 extended to the nucleotide sequence level. SF370.2 showed two probable inactivating mutations: one in the replisome organizer gene and another in the gene encoding the portal protein. Prophage SF370.2 also encodes a hyaluronidase and in addition two very likely virulence factors: prophage-encoded toxins acting as superantigens that may contribute to the immune deregulation observed during invasive streptococcal infections. The superantigens are encoded between the phage lysin and the right attachment site of the prophage genome. The genes were nearly sequence identical with a DNA segment in S. equi, suggesting horizontal gene transfer. The trend for prophage genome inactivation was even more evident for the remaining five prophage sequences that showed massive losses of prophage DNA. In these prophage remnants only 13-0.3 kb of putative prophage DNA was detected. We discuss the genomics data from S. pyogenes strain SF370 within the framework of Darwinian coevolution of prophages and lysogenic bacteria and suggest elements of genetic cooperation and elements of an arms race in this host-parasite relationship.
Virology, 1998
A 7.6-kb DNA segment covering the putative lysogeny module of the pac-site-containing temperate S... more A 7.6-kb DNA segment covering the putative lysogeny module of the pac-site-containing temperate Streptococcus thermophilus bacteriophage TP-J34 was sequenced. Sequence alignment with the lysogeny module from the cos-sitecontaining S. thermophilus bacteriophage Sfi21 revealed areas of high sequence conservation (e.g., over the int gene), interspersed with regions of low or no sequence similarity (e.g., over the cro gene). Four of the six sharp transition zones from high to low sequence conservation were found within open reading frames coding for the CI repressor, the Anti-repressor, the Immunity protein, and a protein of unknown function. The transition points in the cI and ant genes appear to separate gene segments coding for distinct functional domains of these proteins. In addition, these two transition points were located at or near the deletion sites observed in spontaneous phage Sfi21 deletion mutants, thus suggesting these transition points as recombinational hotspots. Furthermore, the sequence at the transition point in the cI gene resembles the attachment site of the phage, suggesting the involvement of the phage integrase in at least some of the exchange reactions. Contrary to the initial formulation of the modular theory of phage evolution the unit of the evolutionary exchange in streptococcal phages is not a group of functional genes, but can be as small as a single gene. Exchange reactions can also occur within genes, possibly between gene segments encoding distinct protein domains.
Microbiology (Reading, England), 2004
The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of... more The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of Lactobacillus plantarum (3.3 Mb) and Lactobacillus johnsonii (2.0 Mb). L. johnsonii is predominantly found in the gastrointestinal tract, while L. plantarum is also found on plants and plant-derived material, and is used in a variety of industrial fermentations. The L. plantarum and L. johnsonii chromosomes have only 28 regions with conservation of gene order, totalling about 0.75 Mb; these regions are not co-linear, indicating major chromosomal rearrangements. Metabolic reconstruction indicates many differences between L. johnsonii and L. plantarum: numerous enzymes involved in sugar metabolism and in biosynthesis of amino acids, nucleotides, fatty acids and cofactors are lacking in L. johnsonii. Major differences were seen in the number and types of putative extracellular proteins, which are of interest because of their possible role in host-microbe interactions. The differences betwe...
Journal of virology, 1999
The comparative analysis of five completely sequenced Streptococcus thermophilus bacteriophage ge... more The comparative analysis of five completely sequenced Streptococcus thermophilus bacteriophage genomes demonstrated that their diversification was achieved by a combination of DNA recombination events and an accumulation of point mutations. The five phages included lytic and temperate phages, both pac site and cos site, from three distinct geographical areas. The units of genetic exchange were either large, comprising the entire morphogenesis gene cluster, excluding the putative tail fiber genes, or small, consisting of one or maximally two genes or even segments of a gene. Many indels were flanked by DNA repeats. Differences in a single putative tail fiber gene correlated with the host ranges of the phages. The predicted tail fiber protein consisted of highly conserved domains containing conspicuous glycine repeats interspersed with highly variable domains. As in the T-even coliphage adhesins, the glycine-containing domains were recombinational hot spots. Downstream of a highly con...
Virus genes, 1998
Bacteriophages attacking Streptococcus thermophilus, a lactic acid bacterium used in milk ferment... more Bacteriophages attacking Streptococcus thermophilus, a lactic acid bacterium used in milk fermentation, are a threat to the dairy industry. These small isometric-headed phages possess double-stranded DNA genomes of 31 to 45 kb. Yoghurt-derived phages exhibit a limited degree of variability, as defined by restriction pattern and host range, while a large diversity of phage types have been isolated from cheese factories. Despite this diversity all S. thermophilus phages, virulent and temperate, belong to a single DNA homology group. Several mechanisms appear to create genetic variability in this phage group. Site-specific deletions, one type possibly mediated by a viral recombinase/integrase, which transformed a temperate into a virulent phage, were observed. Recombination as a result of superinfection of a lysogenic host has been reported. Comparative DNA sequencing identified up to 10% sequence diversity due to point mutations. Genome sequencing of the prototype temperate phage phi ...
Applied and environmental microbiology, 1998
Mycobacterium sp. strain HL 4-NT-1, isolated from a mixed soil sample from the Stuttgart area, ut... more Mycobacterium sp. strain HL 4-NT-1, isolated from a mixed soil sample from the Stuttgart area, utilized 4-nitrotoluene as the sole source of nitrogen, carbon, and energy. Under aerobic conditions, resting cells of the Mycobacterium strain metabolized 4-nitrotoluene with concomitant release of small amounts of ammonia; under anaerobic conditions, 4-nitrotoluene was completely converted to 6-amino-m-cresol. 4-Hydroxylaminotoluene was converted to 6-amino-m-cresol by cell extracts and thus could be confirmed as the initial metabolite in the degradative pathway. This enzymatic equivalent to the acid-catalyzed Bamberger rearrangement requires neither cofactors nor oxygen. In the same crucial enzymatic step, the homologous substrate hydroxylaminobenzene was rearranged to 2-aminophenol. Abiotic oxidative dimerization of 6-amino-m-cresol, observed during growth of the Mycobacterium strain, yielded a yellow dihydrophenoxazinone. Another yellow metabolite (lambda max, 385 nm) was tentatively ...
Applied and environmental microbiology, 1997
A mozzarella cheese factory using an undefined, milk-derived Streptococcus thermophilus starter s... more A mozzarella cheese factory using an undefined, milk-derived Streptococcus thermophilus starter system was monitored longitudinally for 2 years to determine whether the diversity of the resident bacteriophage population arose from environmental sources or from genetic changes in the resident phage in the factory. The two hypotheses led to different predictions about the genetic diversity of the phages. With respect to host range, 12 distinct phage types were observed. With two exceptions, phages belonging to different lytic groups showed clearly distinct restriction patterns and multiple isolates of phages showing the same host range exhibited identical or highly related restriction patterns. Sequencing studies in a conserved region of the phage genome revealed no point mutations in multiple isolates of the same phage type, while up to 12% nucleotide sequence diversity was observed between the different phage types. This diversity is as large as that between the most different seque...
Virology, 1997
Phage fSfi21, the only temperate Streptococcus thermophilus phage from our phage collection, show... more Phage fSfi21, the only temperate Streptococcus thermophilus phage from our phage collection, showed extensive DNA homology with virulent phages from lytic group I. Southern blot hybridizations demonstrated that the fSfi21-specific DNA was clustered in an approximately 6.6-kb-long region, the putative lysogeny module. Sequence analysis and database research identified an integrase within this module; orf 203 with homology to an anonymous orf 258 from the temperate lactococcal phage BK5-T; orf 127 and orf 122 with weak homology to the N-and C-terminal parts, respectively, of the cIlike repressor from lactococcal phages Tuc2009 and BK5-T; orf 75 with homology to a repressor protein from lambdoid phage 434 and an anti-repressor ant with homology to phage P1. The molecular arrangement of the predicted orfs in phage fSfi21 was very similar to that of the lactococcal phage BK5-T. The transition from fSfi21-specific DNA into DNA shared with virulent phages was abrupt and flanked at one side by notable DNA repeats. Sequence analysis identified a holin protein to the left of the lysogeny module. A site-specific deletion of 2.4 kb, which reproducibly transformed fSfi21 into a lytic phage, was localized in the lysogeny module. It was flanked at both sides by conspicuous DNA repeats. One repeat region reflected the DNA around the attP site, while the other reflected the putative genetic switch region between repressor and anti-repressor genes. S. thermophilus host Sfi1 transformed with a plasmid containing int and orf 203 showed resistance to superinfection by heterologous phages, but not by the homologous fSfi21. Part of the int gene could be deleted without loss of this activity, while a deletion in orf 203 resulted in loss of the phage resistance. We speculate on the possibility of a bipartite immunity system for the control of lysogeny in fSfi21. ᭧ 1997 Academic Press
Virology, 1998
The structural gene cluster and the lysis module from lytic group II Streptococcus thermophilus b... more The structural gene cluster and the lysis module from lytic group II Streptococcus thermophilus bacteriophage Sfi11 was compared to the corresponding region from other Siphoviridae. The analysis revealed a hierarchy of relatedness. Sfi11 differed from the temperate S. thermophilus bacteriophage O1205 by about 10% at the nucleotide level. The majority of the changes were point mutations, mainly at the third base position. Only a single gene (orf 695) differed substantially between the two phages. Over the putative minor tail and lysis genes, Sfi11 and the lytic group I S. thermophilus Sfi19 shared regions with variable degrees of similarity. Orf 1291 from Sfi19 was replaced by four genes in Sfi11, two of which (orf 1000 and orf 695) showed a complicated pattern of similarity and nonsimilarity compared with Sfi19. The predicted orf 695 gp resembles the receptor-recognizing protein of T-even coliphages in its organization, but not its sequence. No sequence similarity was detected between Sfi11 and Sfi19 in the region covering the major head and tail genes. Comparison of the structural gene map of Sfi11 with that of Siphoviridae from gram-positive and -negative bacterial hosts revealed a common genomic organization. Sequence similarity was only found between Sfi11 and Siphoviridae from gram-positive hosts and correlated with the evolutionary distance between the bacterial hosts. Our data are compatible with the hypothesis that the structural gene operon from Siphoviridae of the low GϩC group of gram-positive bacteria is derived from a common ancestor.
Virology, 1998
Comparative sequence analysis of 40% of the genomes from two prototype Streptococcus thermophilus... more Comparative sequence analysis of 40% of the genomes from two prototype Streptococcus thermophilus bacteriophages (lytic group I phage Sfi19 and the cos site containing temperate phage Sfi21) suggested two processes in the evolution of their genomes. In a first evolutionarily distant phase the basic genome structure was apparently constituted by modular exchanges. Over the 17-kb-long DNA segment analyzed in the present report, we observed clusters of genes with similarity to genes from Leuconostoc oenos phage L10, Lactococcus lactis phage BK5-T, and Streptococcus pneumoniae phage Dp-1. A chimeric protein was predicted for orf 1291 which showed similarity to both phage BK5-T and phage Dp-1 proteins. The very large orf 1626 gene product showed similarity to two adjacent genes from the Lactobacillus delbrueckii phage LL-H and further phage proteins (Lactococcus lactis, Bacillus subtilis). The similarities were localized to distinct parts of this apparently multifunctional protein. The putative Sfi19 lysin showed similarity to both lysins of phages and cellular enzymes. In a second, evolutionarily more recent, phase the S. thermophilus phage genomes apparently diversified by point mutations and small deletions/insertions. Over the investigated 17-kb DNA region Sfi19 differed from Sfi21 by 10% base pair changes, the majority of which were point mutations (mainly at the third codon position), while a third of the base pair differences were contributed by small deletions/insertions. The base pair changes were unevenly distributed: Over the Leuconostoc phagerelated DNA the change rate was high, while over the Lactococcus and S. pneumoniae phage-related DNA the change rate was low. We speculate that the degree of base pair change could provide relative time scales for the modular exchange reactions observed in S. thermophilus phages.
Soil & Environment, 1995
... Figure 3 shows the load of all found contaminants in the soil slurry during the anaerobic tre... more ... Figure 3 shows the load of all found contaminants in the soil slurry during the anaerobic treatment. Given ... Table 1. Total Amount of Soil Contaminants before and after Biological Anaerobic/Aerobic Treatment at Technical Scale. contaminant, ...
Virology, 2001
Lactococcus lactis phage BK5-T and Streptococcus thermophilus phage Sfi21, two cos-site temperate... more Lactococcus lactis phage BK5-T and Streptococcus thermophilus phage Sfi21, two cos-site temperate Siphoviridae with 40-kb genomes, share an identical genome organization, sequence similarity at the amino acid level over about half of their genomes, and nucleotide sequence identity of 60% over the DNA packaging and head morphogenesis modules. Siphoviridae with similarly organized genomes and substantial protein sequence similarity were identified in several genera of low-GC-content Gram-positive bacteria. These phages demonstrated a gradient of relatedness ranging from nucleotide sequence similarity to protein sequence similarity to gene map similarity over the DNA packaging and head morphogenesis modules. Interestingly, the degree of relatedness was correlated with the evolutionary distance separating their bacterial hosts. These observations suggest elements of vertical evolution in phages. The structural genes from BK5-T shared no sequence relationships with corresponding genes/proteins from lactococcal phages belonging to distinct lactococcal phage species, including phage sk1 (phage species 936) that showed a closely related gene map. Despite a clearly distinct genome organization, lactococcal phages sk1 and c2 showed nine sequence-related proteins. Over the early gene cluster phage BK5-T shared nine regions of high nucleotide sequence similarity, covering at most two adjacent genes, with lactococcal phage r1t (phage species P335). Over the structural genes, the closest relatives of phage r1t were not lactococcal phages belonging to other phage species, but Siphoviridae from Mycobacteria (high-GC-content Gram-positive bacteria). Evidence for recent horizontal gene transfer between distinct phage species was obtained for dairy phages, but these transfers were limited to phages infecting the same bacterial host species.
Antonie van Leeuwenhoek, 2002
Comparative phage genomics has become possible due to the availability of more than 100 complete ... more Comparative phage genomics has become possible due to the availability of more than 100 complete phage genome sequences and the development of powerful bioinformatics tools. This technology, profiting from classical molecular-biology knowledge, has opened avenues of research for topics, which were difficult to address in the past. Now, it is possible to retrace part of the evolutionary history of phage modules by comparative genomics. The diagnosis of relatedness is hereby not uniquely based on sequence similarity alone, but includes topological considerations of genome organization. Detailed transcription maps have allowed in silico predictions of genome organization to be verified and refined. This comparative knowledge is providing the basis for a new taxonomic classification concept for bacteriophages infecting low G + C-content Gram-positive bacteria based on the genetic organization of the structural gene module. An Sfi21-like and an Sfi11-like genus of Siphoviridae is propose...
Proceedings of the National Academy of Sciences of the United States of America, 2005
Bifidobacteria are Gram-positive prokaryotes that naturally colonize the human gastrointestinal t... more Bifidobacteria are Gram-positive prokaryotes that naturally colonize the human gastrointestinal tract (GIT) and vagina. Although not numerically dominant in the complex intestinal microflora, they are considered as key commensals that promote a healthy GIT. We determined the 2.26-Mb genome sequence of an infant-derived strain of Bifidobacterium longum, and identified 1,730 possible coding sequences organized in a 60%-GC circular chromosome. Bioinformatic analysis revealed several physiological traits that could partially explain the successful adaptation of this bacteria to the colon. An unexpectedly large number of the predicted proteins appeared to be specialized for catabolism of a variety of oligosaccharides, some possibly released by rare or novel glycosyl hydrolases acting on ''nondigestible'' plant polymers or host-derived glycoproteins and glycoconjugates. This ability to scavenge from a large variety of nutrients likely contributes to the competitiveness and persistence of bifidobacteria in the colon. Many genes for oligosaccharide metabolism were found in self-regulated modules that appear to have arisen in part from gene duplication or horizontal acquisition. Complete pathways for all amino acids, nucleotides, and some key vitamins were identified; however, routes for Asp and Cys were atypical. More importantly, genome analysis provided insights into the reciprocal interactions of bifidobacteria with their hosts. We identified polypeptides that showed homology to most major proteins needed for production of glycoprotein-binding fimbriae, structures that could possibly be important for adhesion and persistence in the GIT. We also found a eukaryotic-type serine protease inhibitor (serpin) possibly involved in the reported immunomodulatory activity of bifidobacteria.
Genome Biology 2006, 7:R106 comment reviews reports deposited research refereed research interact... more Genome Biology 2006, 7:R106 comment reviews reports deposited research refereed research interactions information
Genome biology, 2005
A crucial aim upon the completion of the human genome is the verification and functional annotati... more A crucial aim upon the completion of the human genome is the verification and functional annotation of all predicted genes and their protein products. Here we describe the mapping of peptides derived from accurate interpretations of protein tandem mass spectrometry (MS) data to eukaryotic genomes and the generation of an expandable resource for integration of data from many diverse proteomics experiments. Furthermore, we demonstrate that peptide identifications obtained from high-throughput proteomics can be integrated on a large scale with the human genome. This resource could serve as an expandable repository for MS-derived proteome information.
Virology, 1999
The temperate Streptococcus thermophilus bacteriophage Sfi21 possesses 15-nucleotide-long cohesiv... more The temperate Streptococcus thermophilus bacteriophage Sfi21 possesses 15-nucleotide-long cohesive ends with a 3Ј overhang that reconstitutes a cos-site with twofold hyphenated rotational symmetry. Over the DNA packaging, head and tail morphogenesis modules, the Sfi21 sequence predicts a gene map that is strikingly similar to that of lambdoid coliphages in the absence of any sequence similarity. A nearly one to one gene correlation was found with the phage lambda genes Nu1 to H, except for gene B-to-E complex, where the Sfi21 map resembled that of coliphage HK97. The similarity between Sfi21 and HK97 was striking: both major head proteins showed an N-terminal coiled-coil structure, the mature major head proteins started at amino acid positions 105 and 104, respectively, and both major head genes were preceded by genes encoding a possible protease and portal protein. The purported Sfi21 protease is the first viral member of the ClpP protease family. The prediction of Sfi21 gene functions by reference to the gene map of intensively investigated coliphages was experimentally confirmed for the major head and tail gene. Phage Sfi21 shows nucleotide sequence similarity with Lactococcus phage BK5-T and a lactococcal prophage and amino acid sequence similarity with the Lactobacillus phage A2 and the Staphylococcus phage PVL. PVL is a missing link that connects the portal proteins from Sfi21 and HK97 with respect to sequence similarity. These observations and database searches, which demonstrate sequence similarity between proteins of phage from gram-positive bacteria, proteobacteria, and Archaea, constrain models of phage evolution.
Virology, 1999
The virulent cos-site Streptococcus thermophilus bacteriophage Sfi19 has a 37,392-bp-long genome ... more The virulent cos-site Streptococcus thermophilus bacteriophage Sfi19 has a 37,392-bp-long genome consisting of 44 open reading frames all encoded on the same DNA strand. The genome of the temperate cos-site S. thermophilus phage Sfi21 is 3.3 kb longer (40,740 bp, 53 orfs). Both genomes are very similarly organized and differed mainly by gene deletion and DNA rearrangement events in the lysogeny module; gene replacement, duplication, and deletion events in the DNA replication module, and numerous point mutations. The level of point mutations varied from Ͻ1% (lysis and DNA replication modules) to Ͼ15% (DNA packaging and head morphogenesis modules). A dotplot analysis showed nearly a straight line over the left 25 kb of their genomes. Over the right genome half, a more variable dotplot pattern was observed. The entire lysogeny module from Sfi21 comprising 12 genes was replaced by 7 orfs in Sfi19, six showed similarity with genes from temperate pac-site S. thermophilus phages. None of the genes implicated in the establishment of the lysogenic state (integrase, superinfection immunity, repressor) or remnants of it were conserved in Sfi19, while a Cro-like repressor was detected. Downstream of the highly conserved DNA replication module 11 and 13 orfs were found in Sfi19 and Sfi21, respectively: Two orfs from Sfi21 were replaced by a different gene and a duplication of the phage origin of replication in Sfi19; a further orf was only found in Sfi21. All other orfs from this region, which included a second putative phage repressor, were closely related between both phages. Two noncoding regions of Sfi19 showed sequence similarity to pST1, a small cryptic plasmid of S. thermophilus.
Virology, 2001
The genome of the highly pathogenic M1 serotype Streptococcus pyogenes isolate SF370 contains eig... more The genome of the highly pathogenic M1 serotype Streptococcus pyogenes isolate SF370 contains eight prophage elements. Only prophage SF370.1 could be induced by mitomycin C treatment. Prophage SF370.3 showed a 33.5-kb-long genome that closely resembled the genome organization of the cos-site temperate Siphovirus r1t infecting the dairy bacterium Lactococcus lactis. The two-phage genomes shared between 60 and 70% nucleotide sequence identity over the DNA packaging, head and tail genes. Analysis of the SF370.3 genome revealed mutations in the replisome organizer gene that may prevent the induction of the prophage. The mutated phage replication gene was closely related to a virulence marker identified in recently emerged M3 serotype S. pyogenes strains in Japan. This observation suggests that prophage genes confer selective advantage to the lysogenic host. SF370.3 encodes a hyaluronidase and a DNase that may facilitate the spreading of S. pyogenes through tissue planes of its human host. Prophage SF370.2 showed a 43-kb-long genome that closely resembled the genome organization of pac-site temperate Siphoviridae infecting the dairy bacteria S. thermophilus and L. lactis. Over part of the structural genes, the similarity between SF370.2 and S. thermophilus phage O1205 extended to the nucleotide sequence level. SF370.2 showed two probable inactivating mutations: one in the replisome organizer gene and another in the gene encoding the portal protein. Prophage SF370.2 also encodes a hyaluronidase and in addition two very likely virulence factors: prophage-encoded toxins acting as superantigens that may contribute to the immune deregulation observed during invasive streptococcal infections. The superantigens are encoded between the phage lysin and the right attachment site of the prophage genome. The genes were nearly sequence identical with a DNA segment in S. equi, suggesting horizontal gene transfer. The trend for prophage genome inactivation was even more evident for the remaining five prophage sequences that showed massive losses of prophage DNA. In these prophage remnants only 13-0.3 kb of putative prophage DNA was detected. We discuss the genomics data from S. pyogenes strain SF370 within the framework of Darwinian coevolution of prophages and lysogenic bacteria and suggest elements of genetic cooperation and elements of an arms race in this host-parasite relationship.
Virology, 1998
A 7.6-kb DNA segment covering the putative lysogeny module of the pac-site-containing temperate S... more A 7.6-kb DNA segment covering the putative lysogeny module of the pac-site-containing temperate Streptococcus thermophilus bacteriophage TP-J34 was sequenced. Sequence alignment with the lysogeny module from the cos-sitecontaining S. thermophilus bacteriophage Sfi21 revealed areas of high sequence conservation (e.g., over the int gene), interspersed with regions of low or no sequence similarity (e.g., over the cro gene). Four of the six sharp transition zones from high to low sequence conservation were found within open reading frames coding for the CI repressor, the Anti-repressor, the Immunity protein, and a protein of unknown function. The transition points in the cI and ant genes appear to separate gene segments coding for distinct functional domains of these proteins. In addition, these two transition points were located at or near the deletion sites observed in spontaneous phage Sfi21 deletion mutants, thus suggesting these transition points as recombinational hotspots. Furthermore, the sequence at the transition point in the cI gene resembles the attachment site of the phage, suggesting the involvement of the phage integrase in at least some of the exchange reactions. Contrary to the initial formulation of the modular theory of phage evolution the unit of the evolutionary exchange in streptococcal phages is not a group of functional genes, but can be as small as a single gene. Exchange reactions can also occur within genes, possibly between gene segments encoding distinct protein domains.