Frederik Warburg - Academia.edu (original) (raw)
Papers by Frederik Warburg
arXiv (Cornell University), Oct 7, 2021
Active stereo systems are used in many robotic applications that require 3D information. These de... more Active stereo systems are used in many robotic applications that require 3D information. These depth sensors, however, suffer from stereo artefacts and do not provide dense depth estimates.In this work, we present the first self-supervised depth completion method for active stereo systems that predicts accurate dense depth maps. Our system leverages a feature-based visual inertial SLAM system to produce motion estimates and accurate (but sparse) 3D landmarks. The 3D landmarks are used both as model input and as supervision during training. The motion estimates are used in our novel reconstruction loss that relies on a combination of passive and active stereo frames, resulting in significant improvements in textureless areas that are common in indoor environments. Due to the nonexistence of publicly available active stereo datasets, we release a real dataset together with additional information for a publicly available synthetic dataset (TartanAir [42]) needed for active depth completion and prediction. Through rigorous evaluations we show that our method outperforms state of the art on both datasets. Additionally we show how our method obtains more complete, and therefore safer, 3D maps when used in a robotic platform.
arXiv (Cornell University), Apr 7, 2020
Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream ta... more Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream tasks by 'zooming in' on relevant regions in an image. However, STNs are hard to train and sensitive to mis-predictions of transformations. To circumvent these limitations, we propose a probabilistic extension that estimates a stochastic transformation rather than a deterministic one. Marginalizing transformations allows us to consider each image at multiple poses, which makes the localization task easier and the training more robust. As an additional benefit, the stochastic transformations act as a localized, learned data augmentation that improves the downstream tasks. We show across standard imaging benchmarks and on a challenging real-world dataset that these two properties lead to improved classification performance, robustness and model calibration. We further demonstrate that the approach generalizes to non-visual domains by improving model performance on time-series data.
arXiv (Cornell University), Nov 25, 2020
Uncertainty quantification in image retrieval is crucial for downstream decisions, yet it remains... more Uncertainty quantification in image retrieval is crucial for downstream decisions, yet it remains a challenging and largely unexplored problem. Current methods for estimating uncertainties are poorly calibrated, computationally expensive, or based on heuristics. We present a new method that views image embeddings as stochastic features rather than deterministic features. Our two main contributions are (1) a likelihood that matches the triplet constraint and that evaluates the probability of an anchor being closer to a positive than a negative; and (2) a prior over the feature space that justifies the conventional l 2 normalization. To ensure computational efficiency, we derive a variational approximation of the posterior, called the Bayesian triplet loss, that produces state-of-the-art uncertainty estimates and matches the predictive performance of current state-of-the-art methods.
arXiv (Cornell University), Jun 30, 2022
Established methods for unsupervised representation learning such as variational autoencoders pro... more Established methods for unsupervised representation learning such as variational autoencoders produce none or poorly calibrated uncertainty estimates making it difficult to evaluate if learned representations are stable and reliable. In this work, we present a Bayesian autoencoder for unsupervised representation learning, which is trained using a novel variational lower bound of the autoencoder evidence. This is maximized using Monte Carlo EM with a variational distribution that takes the shape of a Laplace approximation. We develop a new Hessian approximation that scales linearly with data size allowing us to model high-dimensional data. Empirically, we show that our Laplacian autoencoder estimates well-calibrated uncertainties in both latent and output space. We demonstrate that this results in improved performance across a multitude of downstream tasks. 1 Denotes equal contribution; author order determined by a simulated coin toss. Preprint. Under review.
arXiv (Cornell University), Mar 23, 2023
Out of distribution (OOD) medical images are frequently encountered, e.g. because of site-or scan... more Out of distribution (OOD) medical images are frequently encountered, e.g. because of site-or scanner differences, or image corruption. OOD images come with a risk of incorrect image segmentation, potentially negatively affecting downstream diagnoses or treatment. To ensure robustness to such incorrect segmentations, we propose Laplacian Segmentation Networks (LSN) that jointly model epistemic (model) and aleatoric (data) uncertainty in image segmentation. We capture data uncertainty with a spatially correlated logit distribution. For model uncertainty, we propose the first Laplace approximation of the weight posterior that scales to large neural networks with skip connections that have high-dimensional outputs. Empirically, we demonstrate that modelling spatial pixel correlation allows the Laplacian Segmentation Network to successfully assign high epistemic uncertainty to out-of-distribution objects appearing within images.
IEEE robotics and automation letters, Oct 1, 2022
Place recognition and visual localization are particularly challenging in wide baseline configura... more Place recognition and visual localization are particularly challenging in wide baseline configurations. In this paper, we contribute with the Danish Airs and Grounds (DAG) dataset, a large collection of street-level and aerial images targeting such cases. Its main challenge lies in the extreme viewing-angle difference between query and reference images with consequent changes in illumination and perspective. The dataset is larger and more diverse than current publicly available data, including more than 50 km of roads in urban, suburban and rural areas. All images are associated with accurate 6-DoF metadata that allows the benchmarking of visual localization methods. Additionally, we validate our data by presenting the results of a simple map-to-image re-localization baseline. that first estimates a dense 3D reconstruction from the aerial images and then matches query street-level images to street-level renderings of the 3D model. The dataset can be downloaded at: https: //frederikwarburg.github.io/DAG/.
arXiv (Cornell University), Jun 6, 2022
Recently, advances in differential volumetric rendering enabled significant breakthroughs in the ... more Recently, advances in differential volumetric rendering enabled significant breakthroughs in the photo-realistic and fine-detailed reconstruction of complex 3D scenes, which is key for many virtual reality applications. However, in the context of augmented reality, one may also wish to effect semantic manipulations or augmentations of objects within a scene. To this end, we propose a volumetric framework for (i) disentangling or separating, the volumetric representation of a given foreground object from the background, and (ii) semantically manipulating the foreground object, as well as the background. Our framework takes as input a set of 2D masks specifying the desired foreground object for training views, together with the associated 2D views and poses, and produces a foreground-background disentanglement that respects the surrounding illumination, reflections, and partial occlusions, which can be applied to both training and novel views. Our method enables the separate control of pixel color and depth as well as 3D similarity transformations of both the foreground and background objects. We subsequently demonstrate the applicability of our framework on a number of downstream manipulation tasks including object camouflage, non-negative 3D object inpainting, 3D object translation, 3D object inpainting, and 3D text-based object manipulation. Full results are given in our project webpage at https: //sagiebenaim.github.io/volumetric-disentanglement/
arXiv (Cornell University), Jun 9, 2022
Most pipelines for Augmented and Virtual Reality estimate the ego-motion of the camera by creatin... more Most pipelines for Augmented and Virtual Reality estimate the ego-motion of the camera by creating a map of sparse 3D landmarks. In this paper, we tackle the problem of depth completion, that is, densifying this sparse 3D map using RGB images as guidance. This remains a challenging problem due to the low density, non-uniform and outlier-prone 3D landmarks produced by SfM and SLAM pipelines. We introduce a transformer block, SparseFormer, that fuses 3D landmarks with deep visual features to produce dense depth. The SparseFormer has a global receptive field, making the module especially effective for depth completion with low-density and non-uniform landmarks. To address the issue of depth outliers among the 3D landmarks, we introduce a trainable refinement module that filters outliers through attention between the sparse landmarks.
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
arXiv (Cornell University), Apr 20, 2023
arXiv (Cornell University), Mar 23, 2023
arXiv (Cornell University), Feb 2, 2023
arXiv (Cornell University), Jan 24, 2023
Cornell University - arXiv, Jun 6, 2022
Social media platforms give rise to an abundance of posts and comments on every topic imaginable.... more Social media platforms give rise to an abundance of posts and comments on every topic imaginable. Many of these posts express opinions on various aspects of society, but their unfalsifiable nature makes them ill-suited to fact-checking pipelines. In this work, we aim to distill such posts into a small set of narratives that capture the essential claims related to a given topic. Understanding and visualizing these narratives can facilitate more informed debates on social media. As a first step towards systematically identifying the underlying narratives on social media, we introduce PAPYER , a fine-grained dataset of online comments related to hygiene in public restrooms, which contains a multitude of unfalsifiable claims. We present a human-in-the-loop pipeline that uses a combination of machine and human kernels to discover the prevailing narratives and show that this pipeline outperforms recent large transformer models and state-of-the-art unsupervised topic models.
Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream ta... more Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream tasks by 'zooming in' on relevant regions in an image. However, STNs are hard to train and sensitive to mis-predictions of transformations. To circumvent these limitations, we propose a probabilistic extension that estimates a stochastic transformation rather than a deterministic one. Marginalizing transformations allows us to consider each image at multiple poses, which makes the localization task easier and the training more robust. As an additional benefit, the stochastic transformations act as a localized, learned data augmentation that improves the downstream tasks. We show across standard imaging benchmarks and on a challenging real-world dataset that these two properties lead to improved classification performance, robustness and model calibration. We further demonstrate that the approach generalizes to non-visual domains by improving model performance on time-series data.
Established methods for unsupervised representation learning such as variational autoencoders pro... more Established methods for unsupervised representation learning such as variational autoencoders produce none or poorly calibrated uncertainty estimates making it difficult to evaluate if learned representations are stable and reliable. In this work, we present a Bayesian autoencoder for unsupervised representation learning, which is trained using a novel variational lower-bound of the autoencoder evidence. This is maximized using Monte Carlo EM with a variational distribution that takes the shape of a Laplace approximation. We develop a new Hessian approximation that scales linearly with data size allowing us to model high-dimensional data. Empirically, we show that our Laplacian autoencoder estimates well-calibrated uncertainties in both latent and output space. We demonstrate that this results in improved performance across a multitude of downstream tasks.
Most pipelines for Augmented and Virtual Reality estimate the ego-motion of the camera by creatin... more Most pipelines for Augmented and Virtual Reality estimate the ego-motion of the camera by creating a map of sparse 3D landmarks. In this paper, we tackle the problem of depth completion, that is, densifying this sparse 3D map using RGB images as guidance. This remains a challenging problem due to the low density, non-uniform and outlier-prone 3D landmarks produced by SfM and SLAM pipelines. We introduce a transformer block, SparseFormer, that fuses 3D landmarks with deep visual features to produce dense depth. The SparseFormer has a global receptive field, making the module especially effective for depth completion with low-density and non-uniform landmarks. To address the issue of depth outliers among the 3D landmarks, we introduce a trainable refinement module that filters outliers through attention between the sparse landmarks.
Journal of Optimization Theory and Applications, 2009
ABSTRACT
ArXiv, 2022
Place recognition and visual localization are particularly challenging in wide baseline configura... more Place recognition and visual localization are particularly challenging in wide baseline configurations. In this paper, we contribute with the Danish Airs and Grounds (DAG) dataset, a large collection of street-level and aerial images targeting such cases. Its main challenge lies in the extreme viewing-angle difference between query and reference images with consequent changes in illumination and perspective. The dataset is larger and more diverse than current publicly available data, including more than 50 km of road in urban, suburban and rural areas. All images are associated with accurate 6-DoF metadata that allows the benchmarking of visual localization methods. We also propose a map-to-image re-localization pipeline, that first estimates a dense 3D reconstruction from the aerial images and then matches query street-level images to street-level renderings of the 3D model. The dataset can be downloaded at: https://frederikwarburg.github.io/DAG/.
arXiv (Cornell University), Oct 7, 2021
Active stereo systems are used in many robotic applications that require 3D information. These de... more Active stereo systems are used in many robotic applications that require 3D information. These depth sensors, however, suffer from stereo artefacts and do not provide dense depth estimates.In this work, we present the first self-supervised depth completion method for active stereo systems that predicts accurate dense depth maps. Our system leverages a feature-based visual inertial SLAM system to produce motion estimates and accurate (but sparse) 3D landmarks. The 3D landmarks are used both as model input and as supervision during training. The motion estimates are used in our novel reconstruction loss that relies on a combination of passive and active stereo frames, resulting in significant improvements in textureless areas that are common in indoor environments. Due to the nonexistence of publicly available active stereo datasets, we release a real dataset together with additional information for a publicly available synthetic dataset (TartanAir [42]) needed for active depth completion and prediction. Through rigorous evaluations we show that our method outperforms state of the art on both datasets. Additionally we show how our method obtains more complete, and therefore safer, 3D maps when used in a robotic platform.
arXiv (Cornell University), Apr 7, 2020
Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream ta... more Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream tasks by 'zooming in' on relevant regions in an image. However, STNs are hard to train and sensitive to mis-predictions of transformations. To circumvent these limitations, we propose a probabilistic extension that estimates a stochastic transformation rather than a deterministic one. Marginalizing transformations allows us to consider each image at multiple poses, which makes the localization task easier and the training more robust. As an additional benefit, the stochastic transformations act as a localized, learned data augmentation that improves the downstream tasks. We show across standard imaging benchmarks and on a challenging real-world dataset that these two properties lead to improved classification performance, robustness and model calibration. We further demonstrate that the approach generalizes to non-visual domains by improving model performance on time-series data.
arXiv (Cornell University), Nov 25, 2020
Uncertainty quantification in image retrieval is crucial for downstream decisions, yet it remains... more Uncertainty quantification in image retrieval is crucial for downstream decisions, yet it remains a challenging and largely unexplored problem. Current methods for estimating uncertainties are poorly calibrated, computationally expensive, or based on heuristics. We present a new method that views image embeddings as stochastic features rather than deterministic features. Our two main contributions are (1) a likelihood that matches the triplet constraint and that evaluates the probability of an anchor being closer to a positive than a negative; and (2) a prior over the feature space that justifies the conventional l 2 normalization. To ensure computational efficiency, we derive a variational approximation of the posterior, called the Bayesian triplet loss, that produces state-of-the-art uncertainty estimates and matches the predictive performance of current state-of-the-art methods.
arXiv (Cornell University), Jun 30, 2022
Established methods for unsupervised representation learning such as variational autoencoders pro... more Established methods for unsupervised representation learning such as variational autoencoders produce none or poorly calibrated uncertainty estimates making it difficult to evaluate if learned representations are stable and reliable. In this work, we present a Bayesian autoencoder for unsupervised representation learning, which is trained using a novel variational lower bound of the autoencoder evidence. This is maximized using Monte Carlo EM with a variational distribution that takes the shape of a Laplace approximation. We develop a new Hessian approximation that scales linearly with data size allowing us to model high-dimensional data. Empirically, we show that our Laplacian autoencoder estimates well-calibrated uncertainties in both latent and output space. We demonstrate that this results in improved performance across a multitude of downstream tasks. 1 Denotes equal contribution; author order determined by a simulated coin toss. Preprint. Under review.
arXiv (Cornell University), Mar 23, 2023
Out of distribution (OOD) medical images are frequently encountered, e.g. because of site-or scan... more Out of distribution (OOD) medical images are frequently encountered, e.g. because of site-or scanner differences, or image corruption. OOD images come with a risk of incorrect image segmentation, potentially negatively affecting downstream diagnoses or treatment. To ensure robustness to such incorrect segmentations, we propose Laplacian Segmentation Networks (LSN) that jointly model epistemic (model) and aleatoric (data) uncertainty in image segmentation. We capture data uncertainty with a spatially correlated logit distribution. For model uncertainty, we propose the first Laplace approximation of the weight posterior that scales to large neural networks with skip connections that have high-dimensional outputs. Empirically, we demonstrate that modelling spatial pixel correlation allows the Laplacian Segmentation Network to successfully assign high epistemic uncertainty to out-of-distribution objects appearing within images.
IEEE robotics and automation letters, Oct 1, 2022
Place recognition and visual localization are particularly challenging in wide baseline configura... more Place recognition and visual localization are particularly challenging in wide baseline configurations. In this paper, we contribute with the Danish Airs and Grounds (DAG) dataset, a large collection of street-level and aerial images targeting such cases. Its main challenge lies in the extreme viewing-angle difference between query and reference images with consequent changes in illumination and perspective. The dataset is larger and more diverse than current publicly available data, including more than 50 km of roads in urban, suburban and rural areas. All images are associated with accurate 6-DoF metadata that allows the benchmarking of visual localization methods. Additionally, we validate our data by presenting the results of a simple map-to-image re-localization baseline. that first estimates a dense 3D reconstruction from the aerial images and then matches query street-level images to street-level renderings of the 3D model. The dataset can be downloaded at: https: //frederikwarburg.github.io/DAG/.
arXiv (Cornell University), Jun 6, 2022
Recently, advances in differential volumetric rendering enabled significant breakthroughs in the ... more Recently, advances in differential volumetric rendering enabled significant breakthroughs in the photo-realistic and fine-detailed reconstruction of complex 3D scenes, which is key for many virtual reality applications. However, in the context of augmented reality, one may also wish to effect semantic manipulations or augmentations of objects within a scene. To this end, we propose a volumetric framework for (i) disentangling or separating, the volumetric representation of a given foreground object from the background, and (ii) semantically manipulating the foreground object, as well as the background. Our framework takes as input a set of 2D masks specifying the desired foreground object for training views, together with the associated 2D views and poses, and produces a foreground-background disentanglement that respects the surrounding illumination, reflections, and partial occlusions, which can be applied to both training and novel views. Our method enables the separate control of pixel color and depth as well as 3D similarity transformations of both the foreground and background objects. We subsequently demonstrate the applicability of our framework on a number of downstream manipulation tasks including object camouflage, non-negative 3D object inpainting, 3D object translation, 3D object inpainting, and 3D text-based object manipulation. Full results are given in our project webpage at https: //sagiebenaim.github.io/volumetric-disentanglement/
arXiv (Cornell University), Jun 9, 2022
Most pipelines for Augmented and Virtual Reality estimate the ego-motion of the camera by creatin... more Most pipelines for Augmented and Virtual Reality estimate the ego-motion of the camera by creating a map of sparse 3D landmarks. In this paper, we tackle the problem of depth completion, that is, densifying this sparse 3D map using RGB images as guidance. This remains a challenging problem due to the low density, non-uniform and outlier-prone 3D landmarks produced by SfM and SLAM pipelines. We introduce a transformer block, SparseFormer, that fuses 3D landmarks with deep visual features to produce dense depth. The SparseFormer has a global receptive field, making the module especially effective for depth completion with low-density and non-uniform landmarks. To address the issue of depth outliers among the 3D landmarks, we introduce a trainable refinement module that filters outliers through attention between the sparse landmarks.
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
arXiv (Cornell University), Apr 20, 2023
arXiv (Cornell University), Mar 23, 2023
arXiv (Cornell University), Feb 2, 2023
arXiv (Cornell University), Jan 24, 2023
Cornell University - arXiv, Jun 6, 2022
Social media platforms give rise to an abundance of posts and comments on every topic imaginable.... more Social media platforms give rise to an abundance of posts and comments on every topic imaginable. Many of these posts express opinions on various aspects of society, but their unfalsifiable nature makes them ill-suited to fact-checking pipelines. In this work, we aim to distill such posts into a small set of narratives that capture the essential claims related to a given topic. Understanding and visualizing these narratives can facilitate more informed debates on social media. As a first step towards systematically identifying the underlying narratives on social media, we introduce PAPYER , a fine-grained dataset of online comments related to hygiene in public restrooms, which contains a multitude of unfalsifiable claims. We present a human-in-the-loop pipeline that uses a combination of machine and human kernels to discover the prevailing narratives and show that this pipeline outperforms recent large transformer models and state-of-the-art unsupervised topic models.
Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream ta... more Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream tasks by 'zooming in' on relevant regions in an image. However, STNs are hard to train and sensitive to mis-predictions of transformations. To circumvent these limitations, we propose a probabilistic extension that estimates a stochastic transformation rather than a deterministic one. Marginalizing transformations allows us to consider each image at multiple poses, which makes the localization task easier and the training more robust. As an additional benefit, the stochastic transformations act as a localized, learned data augmentation that improves the downstream tasks. We show across standard imaging benchmarks and on a challenging real-world dataset that these two properties lead to improved classification performance, robustness and model calibration. We further demonstrate that the approach generalizes to non-visual domains by improving model performance on time-series data.
Established methods for unsupervised representation learning such as variational autoencoders pro... more Established methods for unsupervised representation learning such as variational autoencoders produce none or poorly calibrated uncertainty estimates making it difficult to evaluate if learned representations are stable and reliable. In this work, we present a Bayesian autoencoder for unsupervised representation learning, which is trained using a novel variational lower-bound of the autoencoder evidence. This is maximized using Monte Carlo EM with a variational distribution that takes the shape of a Laplace approximation. We develop a new Hessian approximation that scales linearly with data size allowing us to model high-dimensional data. Empirically, we show that our Laplacian autoencoder estimates well-calibrated uncertainties in both latent and output space. We demonstrate that this results in improved performance across a multitude of downstream tasks.
Most pipelines for Augmented and Virtual Reality estimate the ego-motion of the camera by creatin... more Most pipelines for Augmented and Virtual Reality estimate the ego-motion of the camera by creating a map of sparse 3D landmarks. In this paper, we tackle the problem of depth completion, that is, densifying this sparse 3D map using RGB images as guidance. This remains a challenging problem due to the low density, non-uniform and outlier-prone 3D landmarks produced by SfM and SLAM pipelines. We introduce a transformer block, SparseFormer, that fuses 3D landmarks with deep visual features to produce dense depth. The SparseFormer has a global receptive field, making the module especially effective for depth completion with low-density and non-uniform landmarks. To address the issue of depth outliers among the 3D landmarks, we introduce a trainable refinement module that filters outliers through attention between the sparse landmarks.
Journal of Optimization Theory and Applications, 2009
ABSTRACT
ArXiv, 2022
Place recognition and visual localization are particularly challenging in wide baseline configura... more Place recognition and visual localization are particularly challenging in wide baseline configurations. In this paper, we contribute with the Danish Airs and Grounds (DAG) dataset, a large collection of street-level and aerial images targeting such cases. Its main challenge lies in the extreme viewing-angle difference between query and reference images with consequent changes in illumination and perspective. The dataset is larger and more diverse than current publicly available data, including more than 50 km of road in urban, suburban and rural areas. All images are associated with accurate 6-DoF metadata that allows the benchmarking of visual localization methods. We also propose a map-to-image re-localization pipeline, that first estimates a dense 3D reconstruction from the aerial images and then matches query street-level images to street-level renderings of the 3D model. The dataset can be downloaded at: https://frederikwarburg.github.io/DAG/.