Fulton Crews - Academia.edu (original) (raw)
Papers by Fulton Crews
Alcoholism: Clinical and Experimental Research, 1999
Background: This study was planned to determine the feasibility of using a slow release naloxone ... more Background: This study was planned to determine the feasibility of using a slow release naloxone preparation to treat alcoholism, because compliance with medication is a significant problem in alcoholics.
Alcohol and Alcoholism, 2013
Alcohol, 2012
Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of la... more Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure . To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5 g/kg, s.c., 2 h apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV þ IR) interneurons (18 e33%) and reduced Cux1þIR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology.
Alcohol (Fayetteville, N.Y.), 2015
This article highlights the research presentations at the satellite symposium on "Brain Path... more This article highlights the research presentations at the satellite symposium on "Brain Pathways to Recovery from Alcohol Dependence" held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed.
Addiction Biology, 2015
Adolescence is characterized by considerable brain maturation that coincides with the development... more Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction.
Frontiers in Neuroscience, 2015
Adolescence is a developmental period that coincides with the maturation of adult cognitive facul... more Adolescence is a developmental period that coincides with the maturation of adult cognitive faculties. Binge drinking is common during adolescence and can impact brain maturation. Using a rodent model of adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 20% EtOH w/v; 2 days on/2 days off from postnatal day [P]25 to P55), we discovered that AIE treatment reduced neurogenesis (i.e., doublecortin-immunoreactive [DCX + IR] cells) in both the dorsal and ventral hippocampal dentate gyrus of late adolescent (P56) male Wistar rats that persisted during abstinence into adulthood (P220). This reduction in neurogenesis was accompanied by a concomitant reduction in proliferating cells and an increase in cell death (cleaved caspase-3). In the hippocampus, AIE treatment induced a long-term upregulation of neuroimmune genes, including Toll-like receptor 4 (TLR4) and its endogenous agonist high-mobility group box 1 as well as several proinflammatory signaling molecules. Administration of lipopolysaccharide, a gram-negative endotoxin agonist at TLR4, to young adult rats (P70) produced a similar reduction of DCX + IR cells that was observed in AIE-treated animals. Behaviorally, AIE treatment impaired object recognition on the novel object recognition task when assessed from P163 to P165. Interestingly, object recognition memory was positively correlated with DCX + IR in both the dorsal and ventral hippocampal dentate gyrus while latency to enter the center of the apparatus was negatively correlated with DCX + IR in the ventral dentate gyrus. Together, these data reveal that adolescent binge ethanol exposure persistently inhibits neurogenesis throughout the hippocampus, possibly through neuroimmune mechanisms, which might contribute to altered adult cognitive and emotive function.
Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism, 2003
Recent research demonstrates that neural stem cells divide throughout life and give rise to new n... more Recent research demonstrates that neural stem cells divide throughout life and give rise to new neurons, a process known as neurogenesis. This article addresses two principal questions concerning alcohol and adult neurogenesis: To what extent are neurogenesis in the adult brain and the risk for alcoholism governed by similar factors? And, to what extent and through what mechanisms do alcohol use and alcoholism affect adult neurogenesis? This article also discusses genetic and environmental influences on risk for alcoholism and on regulation of neurogenesis; the possibility that modulation of neurogenesis contributes to alcoholic pathology; and the evidence that alcohol disrupts neurogenesis in the adult brain, and the neurochemical processes by which this may occur.
PLoS ONE, 2014
Neuroimmune gene induction is involved in many brain pathologies including addiction. Although in... more Neuroimmune gene induction is involved in many brain pathologies including addiction. Although increased expression of proinflammatory cytokines has been found in ethanol-treated mouse brain and rat brain slice cultures as well as in postmortem human alcoholic brain, the mechanisms remain elusive. High-mobility group box 1 (HMGB1) protein is a nuclear protein that has endogenous cytokine-like activity. We previously found increased HMGB1 in post-mortem alcoholic human brain as well as in ethanol treated mice and rat brain slice cultures. The present study investigated the mechanisms for ethanol-induced release of HMGB1 and neuroimmune activation in a model of rat hippocampal-entorhinal cortex (HEC) brain slice cultures. Ethanol exposure triggered dose-dependent HMGB1 release, predominantly from neuronal cells. Inhibitors of histone deacetylases (HDACs) promoted nucleocytoplasmic mobilization of HDAC1/4 and HMGB1 resulting in increased total HMGB1 and acetylated HMGB1 release. Similarly, ethanol treatment was found to induce the translocation of HDAC1/4 and HMGB1 proteins from nuclear to cytosolic fractions. Furthermore, ethanol treatment reduced HDAC1/4 mRNA and increased acetylated HMGB1 release into the media. These results suggest decreased HDAC activity may be critical in regulating acetylated HMGB1 release from neurons in response to ethanol. Ethanol and HMGB1 treatment increased mRNA expression of proinflammatory cytokines TNFa and IL-1b as well as toll-like receptor 4 (TLR4). Targeting HMGB1 or microglial TLR4 by using siRNAs to HMGB1 and TLR4, HMGB1 neutralizing antibody, HMGB1 inhibitor glycyrrhizin and TLR4 antagonist as well as inhibitor of microglial activation all blocked ethanol-induced expression of proinflammatory cytokines TNFa and IL-1b. These results support the hypothesis that ethanol alters HDACs that regulate HMGB1 release and that danger signal HMGB1 as endogenous ligand for TLR4 mediates ethanol-induced brain neuroimmune signaling through activation of microglial TLR4. These findings provide new therapeutic targets for brain neuroimmune activation and alcoholism.
The International Journal of Neuropsychopharmacology, 2010
Alcohol dependence leads to persistent neuroadaptations, potentially related to structural plasti... more Alcohol dependence leads to persistent neuroadaptations, potentially related to structural plasticity. Previous work has shown that hippocampal neurogenesis is modulated by alcohol, but effects of chronic alcohol on neurogenesis in the forebrain subventricular zone (SVZ) have not been reported. Effects in this region may be relevant for the impairments in olfactory discrimination present in alcoholism. Here, we examined the effects of prolonged alcohol dependence on neurogenesis. Rats were sacrificed directly after 7 wk of intermittent alcohol vapour exposure, or 3, 7 or 21 d into abstinence. Proliferation was assessed using BrdU and Ki67 immunoreactivity, newly differentiated neurons (neurogenesis) as doublecortinimmunoreactivity (DCX-IR), and neural stem cells using the SOX2 marker. In the dentate gyrus, chronic dependence resulted in a pattern similar to that previously reported for acute alcohol exposure : proliferation and neurogenesis were suppressed by the end of exposure, rebounded on day 3 of abstinence, and returned to control levels by days 7 and 21. In the SVZ, proliferation was also suppressed at the end of alcohol exposure, followed by a proliferation burst 3 d into abstinence. However, in this area, there was a trend for reduced proliferation on days 7 and 21 of abstinence, and this was accompanied by significant suppression of DCX-IR, indicating a long-term suppression of forebrain neurogenesis. Finally, a decrease in the SOX2 stem cell marker was detected at days 7 and 21, suggesting long-term reduction of the SVZ stem cell pool. While suppression of hippocampal neurogenesis by alcohol dependence is transient, the suppression in the forebrain SVZ appears long-lasting.
Prostaglandins, 1982
There is growing evidence that blood vessels generate TXA2 in addition to PGI2. We examined efflu... more There is growing evidence that blood vessels generate TXA2 in addition to PGI2. We examined effluents from continuously perfused human umbilical vein and supernatants from umbilical vein rings for TXB2 and 6-keto-PGF1 alpha measurements (stable metabolites of TXA2 and PGI2, respectively). TXB2 and 6-keto-PGF1 alpha were identified in all samples. 6-keto-PGF1 alpha to TXB2 ratio was higher in intact vein effluents than in the venous ring supernatants (112:1 and 28:1, respectively, P less than 0.01). Arachidonate stimulation increased 6-keto-PGF1 alpha and TXB2 levels similarly in the intact vein effluent. In contrast, stimulation of the venous rings resulted in a relatively larger increase in TXB2 than in 6-keto-PGF1 alpha. This caused 6-keto-PGF1 alpha to TXB2 ratio to decline (p less than 0.01). The identity of TXB2 was confirmed in several different ways. These data suggest that 1) human umbilical veins produce TXA2 in addition to PGI2, 2) TXA2 release is more by venous rings than...
Alcoholism is associated with cognitive deficits and loss of brain mass. Recent studies have indi... more Alcoholism is associated with cognitive deficits and loss of brain mass. Recent studies have indicated that neural progenitor cells proliferate throughout life forming neurons, astrocytes, and oligodendrocytes. The dentate gyrus is one neurogenic region of the adult brain containing neural progenitor cells. To determine if binge ethanol (EtOH) exposure alters neural progenitor cell proliferation and survival, bromodeoxyuridine was administered to adult male rats following an acute or chronic binge exposure paradigm. For an acute binge, rats were gavaged with a 5 g/kg dose of EtOH or vehicle, administered bromodeoxyuridine, and killed either 5 h or 28 days after EtOH treatment. In a 4-day, chronic-binge paradigm, rats were infused with EtOH three times per day (mean dose 9.3 g/kg/day) or isocaloric control diet. Rats were given bromodeoxyuridine once a day for the 4 days of chronic binge treatment, then perfused either immediately following the last dose of EtOH or 28 days later. In both EtOH treatment groups, binge EtOH decreased neural progenitor cell proliferation. Following the chronic four-day binge, neural progenitor cell survival was decreased. These studies are the first to show EtOH inhibition of neural progenitor cell proliferation and survival in the adult, a possible new mechanism underlying alcoholic cognitive dysfunction.
Medical Imaging 2011: Biomedical Applications in Molecular, Structural, and Functional Imaging, 2011
abstract Understanding the effects of adolescent binge drinking that persist into adulthood is a ... more abstract Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric ...
Alcoholism-clinical and Experimental Research, 2001
This article represents the proceedings of a symposium at the 2000 RSA Meeting in Denver, Colorad... more This article represents the proceedings of a symposium at the 2000 RSA Meeting in Denver, Colorado. The organisers/chairs were Stephen C. Bowden and Fulton T. Crews. The presentations were (1) Age, genetic and other factors that increase risk of alcoholism also increase alcohol-induced neurotoxicity, by Fulton T. Crews; (2) A neurocognitive moderation model of addictions treatment response, by Marsha E. Bates; (3) The relationship of neurocognitive impairment and longitudinal treatment outcome among substance-abusing patients, by William Fals-Stewart; and (4) Treatment of cognition in detoxifying alcoholdependent participants, by Margaret L. Ambrose.
Developmental neuroscience, 2014
Although adolescence is a common age to initiate alcohol consumption, the long-term consequences ... more Although adolescence is a common age to initiate alcohol consumption, the long-term consequences of exposure to alcohol at this time of considerable brain maturation are largely unknown. In studies utilizing rodents, behavioral evidence is beginning to emerge suggesting that the hippocampus may be persistently affected by repeated ethanol exposure during adolescence, but not by comparable alcohol exposure in adulthood. The purpose of this series of experiments was to explore a potential mechanism of hippocampal dysfunction in adults exposed to ethanol during adolescence. Given that disruption in adult neurogenesis has been reported to impair performance on tasks thought to be hippocampally related, we used immunohistochemistry to assess levels of doublecortin (DCX), an endogenous marker of immature neurons, in the dentate gyrus (DG) of the hippocampus 3-4 weeks after adolescent (postnatal day, PD28-48) or adult (PD70-90) intermittent ethanol exposure to 4 g/kg ethanol administered i...
The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP), 2014
Binge drinking is prevalent during adolescence and may have effects on the adult brain and behavi... more Binge drinking is prevalent during adolescence and may have effects on the adult brain and behavior. The present study investigated whether adolescent intermittent ethanol exposure alters adult risky choice and prefrontal dopaminergic and forebrain cholinergic neuronal marker levels in male Wistar rats. Adolescent (postnatal day 28-53) rats were administered 5g/kg of 25% (vol/vol) ethanol 3 times/d in a 2-days-on/2-days-off exposure pattern. In adulthood, risky choice was assessed in the probability discounting task with descending and ascending series of large reward probabilities and after acute ethanol challenge. Immunohistochemical analyses assessed tyrosine hydroxylase, a marker of dopamine and norepinephrine in the prelimbic and infralimbic cortices, and choline acetyltransferase, a marker of cholinergic neurons, in the basal forebrain. All of the rats preferred the large reward when it was delivered with high probability. When the large reward became unlikely, control rats pr...
Pharmacology Biochemistry and Behavior, 2002
Impairments of learning and memory are common neuropsychological sequelae of chronic alcohol abus... more Impairments of learning and memory are common neuropsychological sequelae of chronic alcohol abuse. Alcoholics often have impairments of anterograde memory, including spatial memory dysfunction, and a tendency toward response perseveration. This study was designed to assess the effects of binge ethanol exposure on neurodegeneration and cognitive function. Rats were given ethanol three times daily for 4 days. Silver staining revealed
Journal of Neurochemistry, 1993
Phosphatidylinositol (PtdIns) 3-kinase is thought to participate in the signal transduction pathw... more Phosphatidylinositol (PtdIns) 3-kinase is thought to participate in the signal transduction pathways initiated by the activation of receptor tyrosine kinases including the insulin receptor. To approach the physiological relevance of this enzyme in insulin signaling, we studied the activation of PtdIns-3kinase in adipocytes, a major insulin target tissue for glucose transport and utilisation. To analyze possible interactions of the enzyme with cellular proteins, immunoprecipitations with the following antibodies were performed: (a) anti-phosphotyrosine antibodies, (b) two antibodies to the 85-kDa subunit of PtdIns-3-kinase (p85) and (c) an antibody to the 185-kDa major insulin receptor substrate (~185). We show that in cell extracts from adipocytes exposed to insulin, and after immunoprecipitation with an anti-phosphotyrosine antibody and an antibody to p85, we are able to detect a PtdIns-3-kinase activity stimulated by the hormone. Similarly, after immunoprecipitation with an antibody to p185, an increase in the PtdIns-3-kinase activity could be demonstrated. Taken together these results suggest that, upon insulin stimulation of fat cells, PtdIns-3-kinase itself is tyrosine phosphorylated and/or associated with an insulin receptor substrate, such as pl85, which could function as a link between the insulin receptor and Ptdlns-3-kinase. The PtdIns-3-kinase was activated within 1 min of exposure to insulin, and the half-maximal effect was reached at the same concentration, i.e. 3 nM, as for stimulation of the insulin receptor kinase. Subcellular fractionation showed that PtdIns-3-kinase activity was found both in the membranes and in the cytosol. Further, immunoprecipitation with an antibody to p85, which possesses the capacity to activate PtdIns-3-kinase, suggests that the presence of the enzyme in the membrane may be due to an insulin-induced recruitment of the PtdIns-3-kinase from the cytosol to the membrane. Finally, we used isoproterenol, which exerts antagonistic effects on insulin action. This drug was found to inhibit both the PtdIns-3-kinase and the insulin receptor activation by insulin, suggesting that the activation of the PtdIns-3-kinase was closely regulated by the insulin receptor tyrosine kinase. The occurrence of an insulin-stimulated PtdIns-3kinase in adipocytes leads us to propose that this enzyme might be implicated in the generation of metabolic responses induced by insulin.
PLoS ONE, 2014
During the adolescent transition from childhood to adulthood, notable maturational changes occur ... more During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) treatment led to persistent, global reductions of choline acetyltransferase (ChAT) expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70) produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28-P48) and adult (P70-P90) binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity.
Pharmacology Biochemistry and Behavior
Adolescents binge drink more than any other age group, increasing risk of disrupting the developm... more Adolescents binge drink more than any other age group, increasing risk of disrupting the development of the frontal cortex. We hypothesized that adolescent binge drinking would lead to persistent alterations in adulthood. In this study, we modeled adolescent weekend underage binge-drinking, using adolescent mice (post-natal days [P] 28–37). The adolescent intermittent binge ethanol (AIE) treatment includes 6 binge intragastric doses of ethanol in an intermittent pattern across adolescence. Assessments were conducted in adulthood following extended abstinence to determine if there were persistent changes in adults. Reversal learning, open field and other behavioral assessments as well as brain structure using magnetic imaging and immunohistochemistry were determined. We found that AIE did not impact adult Barnes Maze learning. However, AIE did cause reversal learning deficits in adults. AIE also caused structural changes in the adult brain. AIE was associated with adulthood volume en...
Alcoholism: Clinical and Experimental Research, 1999
Background: This study was planned to determine the feasibility of using a slow release naloxone ... more Background: This study was planned to determine the feasibility of using a slow release naloxone preparation to treat alcoholism, because compliance with medication is a significant problem in alcoholics.
Alcohol and Alcoholism, 2013
Alcohol, 2012
Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of la... more Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure . To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5 g/kg, s.c., 2 h apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV þ IR) interneurons (18 e33%) and reduced Cux1þIR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology.
Alcohol (Fayetteville, N.Y.), 2015
This article highlights the research presentations at the satellite symposium on "Brain Path... more This article highlights the research presentations at the satellite symposium on "Brain Pathways to Recovery from Alcohol Dependence" held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed.
Addiction Biology, 2015
Adolescence is characterized by considerable brain maturation that coincides with the development... more Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction.
Frontiers in Neuroscience, 2015
Adolescence is a developmental period that coincides with the maturation of adult cognitive facul... more Adolescence is a developmental period that coincides with the maturation of adult cognitive faculties. Binge drinking is common during adolescence and can impact brain maturation. Using a rodent model of adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 20% EtOH w/v; 2 days on/2 days off from postnatal day [P]25 to P55), we discovered that AIE treatment reduced neurogenesis (i.e., doublecortin-immunoreactive [DCX + IR] cells) in both the dorsal and ventral hippocampal dentate gyrus of late adolescent (P56) male Wistar rats that persisted during abstinence into adulthood (P220). This reduction in neurogenesis was accompanied by a concomitant reduction in proliferating cells and an increase in cell death (cleaved caspase-3). In the hippocampus, AIE treatment induced a long-term upregulation of neuroimmune genes, including Toll-like receptor 4 (TLR4) and its endogenous agonist high-mobility group box 1 as well as several proinflammatory signaling molecules. Administration of lipopolysaccharide, a gram-negative endotoxin agonist at TLR4, to young adult rats (P70) produced a similar reduction of DCX + IR cells that was observed in AIE-treated animals. Behaviorally, AIE treatment impaired object recognition on the novel object recognition task when assessed from P163 to P165. Interestingly, object recognition memory was positively correlated with DCX + IR in both the dorsal and ventral hippocampal dentate gyrus while latency to enter the center of the apparatus was negatively correlated with DCX + IR in the ventral dentate gyrus. Together, these data reveal that adolescent binge ethanol exposure persistently inhibits neurogenesis throughout the hippocampus, possibly through neuroimmune mechanisms, which might contribute to altered adult cognitive and emotive function.
Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism, 2003
Recent research demonstrates that neural stem cells divide throughout life and give rise to new n... more Recent research demonstrates that neural stem cells divide throughout life and give rise to new neurons, a process known as neurogenesis. This article addresses two principal questions concerning alcohol and adult neurogenesis: To what extent are neurogenesis in the adult brain and the risk for alcoholism governed by similar factors? And, to what extent and through what mechanisms do alcohol use and alcoholism affect adult neurogenesis? This article also discusses genetic and environmental influences on risk for alcoholism and on regulation of neurogenesis; the possibility that modulation of neurogenesis contributes to alcoholic pathology; and the evidence that alcohol disrupts neurogenesis in the adult brain, and the neurochemical processes by which this may occur.
PLoS ONE, 2014
Neuroimmune gene induction is involved in many brain pathologies including addiction. Although in... more Neuroimmune gene induction is involved in many brain pathologies including addiction. Although increased expression of proinflammatory cytokines has been found in ethanol-treated mouse brain and rat brain slice cultures as well as in postmortem human alcoholic brain, the mechanisms remain elusive. High-mobility group box 1 (HMGB1) protein is a nuclear protein that has endogenous cytokine-like activity. We previously found increased HMGB1 in post-mortem alcoholic human brain as well as in ethanol treated mice and rat brain slice cultures. The present study investigated the mechanisms for ethanol-induced release of HMGB1 and neuroimmune activation in a model of rat hippocampal-entorhinal cortex (HEC) brain slice cultures. Ethanol exposure triggered dose-dependent HMGB1 release, predominantly from neuronal cells. Inhibitors of histone deacetylases (HDACs) promoted nucleocytoplasmic mobilization of HDAC1/4 and HMGB1 resulting in increased total HMGB1 and acetylated HMGB1 release. Similarly, ethanol treatment was found to induce the translocation of HDAC1/4 and HMGB1 proteins from nuclear to cytosolic fractions. Furthermore, ethanol treatment reduced HDAC1/4 mRNA and increased acetylated HMGB1 release into the media. These results suggest decreased HDAC activity may be critical in regulating acetylated HMGB1 release from neurons in response to ethanol. Ethanol and HMGB1 treatment increased mRNA expression of proinflammatory cytokines TNFa and IL-1b as well as toll-like receptor 4 (TLR4). Targeting HMGB1 or microglial TLR4 by using siRNAs to HMGB1 and TLR4, HMGB1 neutralizing antibody, HMGB1 inhibitor glycyrrhizin and TLR4 antagonist as well as inhibitor of microglial activation all blocked ethanol-induced expression of proinflammatory cytokines TNFa and IL-1b. These results support the hypothesis that ethanol alters HDACs that regulate HMGB1 release and that danger signal HMGB1 as endogenous ligand for TLR4 mediates ethanol-induced brain neuroimmune signaling through activation of microglial TLR4. These findings provide new therapeutic targets for brain neuroimmune activation and alcoholism.
The International Journal of Neuropsychopharmacology, 2010
Alcohol dependence leads to persistent neuroadaptations, potentially related to structural plasti... more Alcohol dependence leads to persistent neuroadaptations, potentially related to structural plasticity. Previous work has shown that hippocampal neurogenesis is modulated by alcohol, but effects of chronic alcohol on neurogenesis in the forebrain subventricular zone (SVZ) have not been reported. Effects in this region may be relevant for the impairments in olfactory discrimination present in alcoholism. Here, we examined the effects of prolonged alcohol dependence on neurogenesis. Rats were sacrificed directly after 7 wk of intermittent alcohol vapour exposure, or 3, 7 or 21 d into abstinence. Proliferation was assessed using BrdU and Ki67 immunoreactivity, newly differentiated neurons (neurogenesis) as doublecortinimmunoreactivity (DCX-IR), and neural stem cells using the SOX2 marker. In the dentate gyrus, chronic dependence resulted in a pattern similar to that previously reported for acute alcohol exposure : proliferation and neurogenesis were suppressed by the end of exposure, rebounded on day 3 of abstinence, and returned to control levels by days 7 and 21. In the SVZ, proliferation was also suppressed at the end of alcohol exposure, followed by a proliferation burst 3 d into abstinence. However, in this area, there was a trend for reduced proliferation on days 7 and 21 of abstinence, and this was accompanied by significant suppression of DCX-IR, indicating a long-term suppression of forebrain neurogenesis. Finally, a decrease in the SOX2 stem cell marker was detected at days 7 and 21, suggesting long-term reduction of the SVZ stem cell pool. While suppression of hippocampal neurogenesis by alcohol dependence is transient, the suppression in the forebrain SVZ appears long-lasting.
Prostaglandins, 1982
There is growing evidence that blood vessels generate TXA2 in addition to PGI2. We examined efflu... more There is growing evidence that blood vessels generate TXA2 in addition to PGI2. We examined effluents from continuously perfused human umbilical vein and supernatants from umbilical vein rings for TXB2 and 6-keto-PGF1 alpha measurements (stable metabolites of TXA2 and PGI2, respectively). TXB2 and 6-keto-PGF1 alpha were identified in all samples. 6-keto-PGF1 alpha to TXB2 ratio was higher in intact vein effluents than in the venous ring supernatants (112:1 and 28:1, respectively, P less than 0.01). Arachidonate stimulation increased 6-keto-PGF1 alpha and TXB2 levels similarly in the intact vein effluent. In contrast, stimulation of the venous rings resulted in a relatively larger increase in TXB2 than in 6-keto-PGF1 alpha. This caused 6-keto-PGF1 alpha to TXB2 ratio to decline (p less than 0.01). The identity of TXB2 was confirmed in several different ways. These data suggest that 1) human umbilical veins produce TXA2 in addition to PGI2, 2) TXA2 release is more by venous rings than...
Alcoholism is associated with cognitive deficits and loss of brain mass. Recent studies have indi... more Alcoholism is associated with cognitive deficits and loss of brain mass. Recent studies have indicated that neural progenitor cells proliferate throughout life forming neurons, astrocytes, and oligodendrocytes. The dentate gyrus is one neurogenic region of the adult brain containing neural progenitor cells. To determine if binge ethanol (EtOH) exposure alters neural progenitor cell proliferation and survival, bromodeoxyuridine was administered to adult male rats following an acute or chronic binge exposure paradigm. For an acute binge, rats were gavaged with a 5 g/kg dose of EtOH or vehicle, administered bromodeoxyuridine, and killed either 5 h or 28 days after EtOH treatment. In a 4-day, chronic-binge paradigm, rats were infused with EtOH three times per day (mean dose 9.3 g/kg/day) or isocaloric control diet. Rats were given bromodeoxyuridine once a day for the 4 days of chronic binge treatment, then perfused either immediately following the last dose of EtOH or 28 days later. In both EtOH treatment groups, binge EtOH decreased neural progenitor cell proliferation. Following the chronic four-day binge, neural progenitor cell survival was decreased. These studies are the first to show EtOH inhibition of neural progenitor cell proliferation and survival in the adult, a possible new mechanism underlying alcoholic cognitive dysfunction.
Medical Imaging 2011: Biomedical Applications in Molecular, Structural, and Functional Imaging, 2011
abstract Understanding the effects of adolescent binge drinking that persist into adulthood is a ... more abstract Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric ...
Alcoholism-clinical and Experimental Research, 2001
This article represents the proceedings of a symposium at the 2000 RSA Meeting in Denver, Colorad... more This article represents the proceedings of a symposium at the 2000 RSA Meeting in Denver, Colorado. The organisers/chairs were Stephen C. Bowden and Fulton T. Crews. The presentations were (1) Age, genetic and other factors that increase risk of alcoholism also increase alcohol-induced neurotoxicity, by Fulton T. Crews; (2) A neurocognitive moderation model of addictions treatment response, by Marsha E. Bates; (3) The relationship of neurocognitive impairment and longitudinal treatment outcome among substance-abusing patients, by William Fals-Stewart; and (4) Treatment of cognition in detoxifying alcoholdependent participants, by Margaret L. Ambrose.
Developmental neuroscience, 2014
Although adolescence is a common age to initiate alcohol consumption, the long-term consequences ... more Although adolescence is a common age to initiate alcohol consumption, the long-term consequences of exposure to alcohol at this time of considerable brain maturation are largely unknown. In studies utilizing rodents, behavioral evidence is beginning to emerge suggesting that the hippocampus may be persistently affected by repeated ethanol exposure during adolescence, but not by comparable alcohol exposure in adulthood. The purpose of this series of experiments was to explore a potential mechanism of hippocampal dysfunction in adults exposed to ethanol during adolescence. Given that disruption in adult neurogenesis has been reported to impair performance on tasks thought to be hippocampally related, we used immunohistochemistry to assess levels of doublecortin (DCX), an endogenous marker of immature neurons, in the dentate gyrus (DG) of the hippocampus 3-4 weeks after adolescent (postnatal day, PD28-48) or adult (PD70-90) intermittent ethanol exposure to 4 g/kg ethanol administered i...
The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP), 2014
Binge drinking is prevalent during adolescence and may have effects on the adult brain and behavi... more Binge drinking is prevalent during adolescence and may have effects on the adult brain and behavior. The present study investigated whether adolescent intermittent ethanol exposure alters adult risky choice and prefrontal dopaminergic and forebrain cholinergic neuronal marker levels in male Wistar rats. Adolescent (postnatal day 28-53) rats were administered 5g/kg of 25% (vol/vol) ethanol 3 times/d in a 2-days-on/2-days-off exposure pattern. In adulthood, risky choice was assessed in the probability discounting task with descending and ascending series of large reward probabilities and after acute ethanol challenge. Immunohistochemical analyses assessed tyrosine hydroxylase, a marker of dopamine and norepinephrine in the prelimbic and infralimbic cortices, and choline acetyltransferase, a marker of cholinergic neurons, in the basal forebrain. All of the rats preferred the large reward when it was delivered with high probability. When the large reward became unlikely, control rats pr...
Pharmacology Biochemistry and Behavior, 2002
Impairments of learning and memory are common neuropsychological sequelae of chronic alcohol abus... more Impairments of learning and memory are common neuropsychological sequelae of chronic alcohol abuse. Alcoholics often have impairments of anterograde memory, including spatial memory dysfunction, and a tendency toward response perseveration. This study was designed to assess the effects of binge ethanol exposure on neurodegeneration and cognitive function. Rats were given ethanol three times daily for 4 days. Silver staining revealed
Journal of Neurochemistry, 1993
Phosphatidylinositol (PtdIns) 3-kinase is thought to participate in the signal transduction pathw... more Phosphatidylinositol (PtdIns) 3-kinase is thought to participate in the signal transduction pathways initiated by the activation of receptor tyrosine kinases including the insulin receptor. To approach the physiological relevance of this enzyme in insulin signaling, we studied the activation of PtdIns-3kinase in adipocytes, a major insulin target tissue for glucose transport and utilisation. To analyze possible interactions of the enzyme with cellular proteins, immunoprecipitations with the following antibodies were performed: (a) anti-phosphotyrosine antibodies, (b) two antibodies to the 85-kDa subunit of PtdIns-3-kinase (p85) and (c) an antibody to the 185-kDa major insulin receptor substrate (~185). We show that in cell extracts from adipocytes exposed to insulin, and after immunoprecipitation with an anti-phosphotyrosine antibody and an antibody to p85, we are able to detect a PtdIns-3-kinase activity stimulated by the hormone. Similarly, after immunoprecipitation with an antibody to p185, an increase in the PtdIns-3-kinase activity could be demonstrated. Taken together these results suggest that, upon insulin stimulation of fat cells, PtdIns-3-kinase itself is tyrosine phosphorylated and/or associated with an insulin receptor substrate, such as pl85, which could function as a link between the insulin receptor and Ptdlns-3-kinase. The PtdIns-3-kinase was activated within 1 min of exposure to insulin, and the half-maximal effect was reached at the same concentration, i.e. 3 nM, as for stimulation of the insulin receptor kinase. Subcellular fractionation showed that PtdIns-3-kinase activity was found both in the membranes and in the cytosol. Further, immunoprecipitation with an antibody to p85, which possesses the capacity to activate PtdIns-3-kinase, suggests that the presence of the enzyme in the membrane may be due to an insulin-induced recruitment of the PtdIns-3-kinase from the cytosol to the membrane. Finally, we used isoproterenol, which exerts antagonistic effects on insulin action. This drug was found to inhibit both the PtdIns-3-kinase and the insulin receptor activation by insulin, suggesting that the activation of the PtdIns-3-kinase was closely regulated by the insulin receptor tyrosine kinase. The occurrence of an insulin-stimulated PtdIns-3kinase in adipocytes leads us to propose that this enzyme might be implicated in the generation of metabolic responses induced by insulin.
PLoS ONE, 2014
During the adolescent transition from childhood to adulthood, notable maturational changes occur ... more During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) treatment led to persistent, global reductions of choline acetyltransferase (ChAT) expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70) produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28-P48) and adult (P70-P90) binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity.
Pharmacology Biochemistry and Behavior
Adolescents binge drink more than any other age group, increasing risk of disrupting the developm... more Adolescents binge drink more than any other age group, increasing risk of disrupting the development of the frontal cortex. We hypothesized that adolescent binge drinking would lead to persistent alterations in adulthood. In this study, we modeled adolescent weekend underage binge-drinking, using adolescent mice (post-natal days [P] 28–37). The adolescent intermittent binge ethanol (AIE) treatment includes 6 binge intragastric doses of ethanol in an intermittent pattern across adolescence. Assessments were conducted in adulthood following extended abstinence to determine if there were persistent changes in adults. Reversal learning, open field and other behavioral assessments as well as brain structure using magnetic imaging and immunohistochemistry were determined. We found that AIE did not impact adult Barnes Maze learning. However, AIE did cause reversal learning deficits in adults. AIE also caused structural changes in the adult brain. AIE was associated with adulthood volume en...