Tanay Ghosh - Academia.edu (original) (raw)

Papers by Tanay Ghosh

Research paper thumbnail of Study of the transcriptional basis of neuronal function and dysfunction

Research paper thumbnail of Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing

Molecular & Cellular Proteomics, 2020

Following central nervous system (CNS) demyelination, adult oligodendrocyte progenitor cells (OPC... more Following central nervous system (CNS) demyelination, adult oligodendrocyte progenitor cells (OPCs) can differentiate into new myelin-forming oligodendrocytes in a regenerative process called remyelination. While remyelination is very efficient in young adults, its efficiency declines progressively with ageing. Here we performed proteomic analysis of OPCs freshly isolated from the brains of neonate, young and aged female rats. Approximately 50% of the proteins are expressed at different levels in OPCs from neonates compared to their adult counterparts. The amount of myelinassociated proteins, and proteins associated with oxidative phosphorylation, inflammatory responses and actin cytoskeletal organization increased with age, while cholesterol-biosynthesis, transcription factors and cell cycle proteins decreased. Our experiments provide the first ageing OPC proteome, revealing the distinct features of OPCs at different ages. These studies provide new insights into why remyelination efficiency declines with ageing and potential roles for aged OPCs in other neurodegenerative diseases.

Research paper thumbnail of Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma

Molecular Psychiatry, 2018

Psychiatric diseases have a strong heritable component known to not be restricted to DNA sequence... more Psychiatric diseases have a strong heritable component known to not be restricted to DNA sequence-based genetic inheritance alone but to also involve epigenetic factors in germ cells. Initial evidence suggested that sperm RNA is causally linked to the transmission of symptoms induced by traumatic experiences. Here, we show that alterations in long RNA in sperm contribute to the inheritance of specific trauma symptoms. Injection of long RNA fraction from sperm of males exposed to postnatal trauma recapitulates the effects on food intake, glucose response to insulin and risk-taking in adulthood whereas the small RNA fraction alters body weight and behavioural despair. Alterations in long RNA are maintained after fertilization, suggesting a direct link between sperm and embryo RNA.

Research paper thumbnail of FOXP2 in the nucleus accumbens regulates reward signaling and social behavior

Research paper thumbnail of Regulation of BACE1 by miR-29a/b in a cellular model of Spinocerebellar ataxia 17

Research paper thumbnail of Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment

The EMBO Journal, 2013

Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new fac... more Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here, we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival, indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNAmediated alternative splicing of cell fate determinants controls stem-cell commitment during neurogenesis.

Research paper thumbnail of A Role for Voltage-Dependent Anion Channel Vdac1 in Polyglutamine-Mediated Neuronal Cell Death

PLoS ONE, 2007

Expansion of trinucleotide repeats in coding and non-coding regions of genes is associated with s... more Expansion of trinucleotide repeats in coding and non-coding regions of genes is associated with sixteen neurodegenerative disorders. However, the molecular effects that lead to neurodegeneration have remained elusive. We have explored the role of transcriptional dysregulation by TATA-box binding protein (TBP) containing an expanded polyglutamine stretch in a mouse neuronal cell culture based model. We find that mouse neuronal cells expressing a variant of human TBP harboring an abnormally expanded polyQ tract not only form intranuclear aggregates, but also show transcription dysregulation of the voltage dependent anion channel, Vdac1, increased cytochrome c release from the mitochondria and upregulation of genes involved in localized neuronal translation. On the other hand, unfolded protein response seemed to be unaffected. Consistent with an increased transcriptional effect, we observe an elevated promoter occupancy by TBP in vivo in TATA containing and TATA-less promoters of differentially expressed genes. Our study suggests a link between transcriptional dysfunction and cell death in trinucleotide repeat mediated neuronal dysfunction through voltage dependent anion channel, Vdac1, which has been recently recognized as a critical determinant of cell death.

Research paper thumbnail of MicroRNAs: novel therapeutic targets in neurodegenerative diseases

Drug Discovery Today, 2009

The prevalence of neurodegenerative disorders is rising steadily as human life expectancy increas... more The prevalence of neurodegenerative disorders is rising steadily as human life expectancy increases. However, limited knowledge of the molecular basis of disease pathogenesis is a major hurdle in the identification of drug targets and development of therapeutic strategies for these largely incurable disorders. Recently, differential expression of endogenous regulatory small RNAs, known as 'microRNAs' (miRNAs), in patients of Alzheimer's disease, Parkinson's disease and models of ataxia suggest that they might have key regulatory roles in neurodegeneration. miRNAs that can target known mediators of neurodegeneration offer potential therapeutic targets. Our bioinformatic analysis suggests novel miRNA-target interactions that could potentially influence neurodegeneration. The recent development of molecules that alter miRNA expression promises valuable tools that will enhance the therapeutic potential of miRNAs.

Research paper thumbnail of Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA

Biomaterials, 2006

A novel class of hyperbranched polymers based on polyglycerol (PG) and poly(ethylene glycol) (PEG... more A novel class of hyperbranched polymers based on polyglycerol (PG) and poly(ethylene glycol) (PEG) are synthesized by multibranching anionic ring opening polymerization. Multivalent cationic sites are added to these polymers by a post-amination and quarternization reactions. Blood compatibility studies using these polymers at different concentrations showed insignificant effects on complement activation, platelet activation, coagulation, erythrocyte aggregation and hemolysis compared to branched cationic polyethyleneimine (PEI). The degree of quarternization does not have large influence on the blood compatibility of the new polymers. Cytotoxicity of these polymers is significantly lower than that of PEI and is a function of quarternized nitrogen present in the polymer. Also, these polymers bind DNA in the nanomolar range and are able to condense DNA to highly compact, stable, water soluble nanoparticles in the range of 60-80 nm. Gel electrophoresis studies showed that they form electroneutral complexes with DNA around N/P ratio 1 irrespective of the percentage of quarternization under the conditions studied.

Research paper thumbnail of MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic β-actin gene

Nucleic Acids Research, 2008

Actin is a major cytoskeletal protein in eukaryotes. Recent studies suggest more diverse function... more Actin is a major cytoskeletal protein in eukaryotes. Recent studies suggest more diverse functional roles for this protein. Actin mRNA is known to be localized to neuronal synapses and undergoes rapid deadenylation during early developmental stages. However, its 3'-untranslated region (UTR) is not characterized and there are no experimentally determined polyadenylation (polyA) sites in actin mRNA. We have found that the cytoplasmic b-actin (Actb) gene generates two alternative transcripts terminated at tandem polyA sites. We used 3'-RACE, EST end analysis and in situ hybridization to unambiguously establish the existence of two 3'-UTRs of varying length in Actb transcript in mouse neuronal cells. Further analyses showed that these two tandem polyA sites are used in a tissue-specific manner. Although the longer 3'-UTR was expressed at a relatively lower level, it conferred higher translational efficiency to the transcript. The longer transcript harbours a conserved mmu-miR-34a/34b-5p target site. Sequencespecific anti-miRNA molecule, mutations of the miRNA target region in the 3'-UTR resulted in reduced expression. The expression was restored by a mutant miRNA complementary to the mutated target region implying that miR-34 binding to Actb 3'-UTR up-regulates target gene expression. Heterogeneity of the Actb 3'-UTR could shed light on the mechanism of miRNA-mediated regulation of messages in neuronal cells.

Research paper thumbnail of A retroviral origin of vertebrate myelin

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in t... more Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains and greater morphological diversity. Here we report that RNA level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show RNLTR12-int-encoded non-coding RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin). RNLTR12-int like sequences (which we name RetroMyelin) are found in all jawed-vertebrates and also regulate myelination in zebrafish, suggesting retroviral endogenization as a key step in the emergence of vertebrate myelin.

Research paper thumbnail of Myc determines the functional age state of oligodendrocyte progenitor cells

Research paper thumbnail of Correction to: Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system

Acta Neuropathologica

The article Niacin‑mediated rejuvenation of macrophage/microglia enhances remyelination of the ag... more The article Niacin‑mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system, written by Khalil S. Rawji, Adam M.H. Young, Tanay Ghosh, Nathan J. Michaels, Reza Mirzaei, Janson Kappen, Kathleen L. Kolehmainen, Nima Alaeiilkhchi, Brian Lozinski, Manoj K. Mishra, Annie Pu, Weiwen Tang, Salma Zein, Deepak K. Kaushik, Michael B. Keough, Jason R. Plemel, Fiona Calvert, Andrew J. Knights, Daniel J. Gaffney, Wolfram Tetzlaff, Robin J. M. Franklin and V. Wee Yong, was originally published electronically on the publisher’s internet.

Research paper thumbnail of Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system

Acta Neuropathologica

Remyelination following CNS demyelination restores rapid signal propagation and protects axons; h... more Remyelination following CNS demyelination restores rapid signal propagation and protects axons; however, its efficiency declines with increasing age. Both intrinsic changes in the oligodendrocyte progenitor cell population and extrinsic factors in the lesion microenvironment of older subjects contribute to this decline. Microglia and monocyte-derived macrophages are critical for successful remyelination, releasing growth factors and clearing inhibitory myelin debris. Several studies have implicated delayed recruitment of macrophages/microglia into lesions as a key contributor to the decline in remyelination observed in older subjects. Here we show that the decreased expression of the scavenger receptor CD36 of aging mouse microglia and human microglia in culture underlies their reduced phagocytic activity. Overexpression of CD36 in cultured microglia rescues the deficit in phagocytosis of myelin debris. By screening for clinically approved agents that stimulate macrophages/microglia, we have found that niacin (vitamin B3) upregulates CD36 expression and enhances myelin phagocytosis by microglia in culture. This increase in myelin phagocytosis is mediated through the niacin receptor (hydroxycarboxylic acid receptor 2). Genetic fate mapping and multiphoton live imaging show that systemic treatment of 9-12-month-old demyelinated mice with therapeutically relevant doses of niacin promotes myelin debris clearance in lesions by both peripherally derived macrophages and microglia. This is accompanied by enhancement of oligodendrocyte progenitor cell numbers and by improved remyelination in the treated mice. Niacin represents a safe and translationally amenable regenerative therapy for chronic demyelinating diseases such as multiple sclerosis.

Research paper thumbnail of ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration

Journal of Clinical Investigation

Research paper thumbnail of Altered social behavior in mice carrying a cortical Foxp2 deletion

Research paper thumbnail of microRNA dysregulation in polyglutamine toxicity of TATA-box binding protein is mediated through STAT1 in mouse neuronal cells

Journal of Neuroinflammation

Background: Polyglutamine diseases constitute a class of neurodegenerative disorders associated w... more Background: Polyglutamine diseases constitute a class of neurodegenerative disorders associated with expansion of the cytosine-adenine-guanine (CAG) triplet, in protein coding genes. Expansion of a polyglutamine tract in the N-terminal of TBP is the causal mutation in SCA17. Brain sections of patients with spinocerebellar ataxia 17 (SCA17), a type of neurodegenerative disease, have been reported to contain protein aggregates of TATA-binding protein (TBP). It is also implicated in other neurodegenerative diseases like Huntington's disease, since the protein aggregates formed in such diseases also contain TBP. Dysregulation of miR-29a/b is another common feature of neurodegenerative diseases including Alzheimer's disease, Huntington's disease, and SCA17. Using a cellular model of SCA17, we identified key connections in the molecular pathway from protein aggregation to miRNA dysregulation. Methods: Gene expression profiling was performed subsequent to the expression of TBP containing polyglutamine in a cellular model of SCA17. We studied the expression of STAT1 and other interferon-gamma dependent genes in neuronal apoptosis. The molecular pathway leading to the dysregulation of miRNA in response of protein aggregation and interferon release was investigated using RNAi-mediated knockdown of STAT1. Results: We show that the accumulation of polyglutamine-TBP in the cells results in interferon-gamma release which in turn signals through STAT1 leading to downregulation of miR-29a/b. We propose that the release of interferons by cells harboring toxic protein aggregates may trigger a bystander effect resulting in loss of neurons. Interferon-gamma also led to upregulation of miR-322 although this effect is not mediated through STAT1. Conclusions: Our investigation shows that neuroinflammation could be an important player in mediating the transcriptional dysregulation of miRNA and the subsequent apoptotic effect of toxic polyglutamine-TBP. The involvement of immunomodulators in polyglutamine diseases holds special therapeutic relevance in the light of recent findings that interferon-gamma can modulate behavior.

Research paper thumbnail of MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis

Cell Reports, 2014

Over the course of cortical neurogenesis, the transition of progenitors from proliferation to dif... more Over the course of cortical neurogenesis, the transition of progenitors from proliferation to differentiation requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neurogenesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regulation between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual susceptibilities for genetically complex neuropsychiatric disorders.

Research paper thumbnail of TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex

Nature Communications

Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogen... more Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate progenitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex. TBR2 removal leads to a significant reduction in neuronal, but not glial, output of individual radial glial progenitors as revealed by mosaic analysis with double markers. Moreover, in the absence of TBR2, clonally related excitatory neurons become more laterally dispersed and their preferential synapse development is impaired. Interestingly, TBR2 directly regulates the expression of Protocadherin 19 (PCDH19), and simultaneous PCDH19 expression rescues neurogenesis and neuronal organization defects caused by TBR2 removal. Together, these results suggest that TBR2 coordinates neurogenesis expansion and precise microcircuit assembly via PCDH19 in the mammalian cortex.

Research paper thumbnail of Study of the transcriptional basis of neuronal function and dysfunction

Research paper thumbnail of Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing

Molecular & Cellular Proteomics, 2020

Following central nervous system (CNS) demyelination, adult oligodendrocyte progenitor cells (OPC... more Following central nervous system (CNS) demyelination, adult oligodendrocyte progenitor cells (OPCs) can differentiate into new myelin-forming oligodendrocytes in a regenerative process called remyelination. While remyelination is very efficient in young adults, its efficiency declines progressively with ageing. Here we performed proteomic analysis of OPCs freshly isolated from the brains of neonate, young and aged female rats. Approximately 50% of the proteins are expressed at different levels in OPCs from neonates compared to their adult counterparts. The amount of myelinassociated proteins, and proteins associated with oxidative phosphorylation, inflammatory responses and actin cytoskeletal organization increased with age, while cholesterol-biosynthesis, transcription factors and cell cycle proteins decreased. Our experiments provide the first ageing OPC proteome, revealing the distinct features of OPCs at different ages. These studies provide new insights into why remyelination efficiency declines with ageing and potential roles for aged OPCs in other neurodegenerative diseases.

Research paper thumbnail of Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma

Molecular Psychiatry, 2018

Psychiatric diseases have a strong heritable component known to not be restricted to DNA sequence... more Psychiatric diseases have a strong heritable component known to not be restricted to DNA sequence-based genetic inheritance alone but to also involve epigenetic factors in germ cells. Initial evidence suggested that sperm RNA is causally linked to the transmission of symptoms induced by traumatic experiences. Here, we show that alterations in long RNA in sperm contribute to the inheritance of specific trauma symptoms. Injection of long RNA fraction from sperm of males exposed to postnatal trauma recapitulates the effects on food intake, glucose response to insulin and risk-taking in adulthood whereas the small RNA fraction alters body weight and behavioural despair. Alterations in long RNA are maintained after fertilization, suggesting a direct link between sperm and embryo RNA.

Research paper thumbnail of FOXP2 in the nucleus accumbens regulates reward signaling and social behavior

Research paper thumbnail of Regulation of BACE1 by miR-29a/b in a cellular model of Spinocerebellar ataxia 17

Research paper thumbnail of Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment

The EMBO Journal, 2013

Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new fac... more Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here, we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival, indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNAmediated alternative splicing of cell fate determinants controls stem-cell commitment during neurogenesis.

Research paper thumbnail of A Role for Voltage-Dependent Anion Channel Vdac1 in Polyglutamine-Mediated Neuronal Cell Death

PLoS ONE, 2007

Expansion of trinucleotide repeats in coding and non-coding regions of genes is associated with s... more Expansion of trinucleotide repeats in coding and non-coding regions of genes is associated with sixteen neurodegenerative disorders. However, the molecular effects that lead to neurodegeneration have remained elusive. We have explored the role of transcriptional dysregulation by TATA-box binding protein (TBP) containing an expanded polyglutamine stretch in a mouse neuronal cell culture based model. We find that mouse neuronal cells expressing a variant of human TBP harboring an abnormally expanded polyQ tract not only form intranuclear aggregates, but also show transcription dysregulation of the voltage dependent anion channel, Vdac1, increased cytochrome c release from the mitochondria and upregulation of genes involved in localized neuronal translation. On the other hand, unfolded protein response seemed to be unaffected. Consistent with an increased transcriptional effect, we observe an elevated promoter occupancy by TBP in vivo in TATA containing and TATA-less promoters of differentially expressed genes. Our study suggests a link between transcriptional dysfunction and cell death in trinucleotide repeat mediated neuronal dysfunction through voltage dependent anion channel, Vdac1, which has been recently recognized as a critical determinant of cell death.

Research paper thumbnail of MicroRNAs: novel therapeutic targets in neurodegenerative diseases

Drug Discovery Today, 2009

The prevalence of neurodegenerative disorders is rising steadily as human life expectancy increas... more The prevalence of neurodegenerative disorders is rising steadily as human life expectancy increases. However, limited knowledge of the molecular basis of disease pathogenesis is a major hurdle in the identification of drug targets and development of therapeutic strategies for these largely incurable disorders. Recently, differential expression of endogenous regulatory small RNAs, known as 'microRNAs' (miRNAs), in patients of Alzheimer's disease, Parkinson's disease and models of ataxia suggest that they might have key regulatory roles in neurodegeneration. miRNAs that can target known mediators of neurodegeneration offer potential therapeutic targets. Our bioinformatic analysis suggests novel miRNA-target interactions that could potentially influence neurodegeneration. The recent development of molecules that alter miRNA expression promises valuable tools that will enhance the therapeutic potential of miRNAs.

Research paper thumbnail of Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA

Biomaterials, 2006

A novel class of hyperbranched polymers based on polyglycerol (PG) and poly(ethylene glycol) (PEG... more A novel class of hyperbranched polymers based on polyglycerol (PG) and poly(ethylene glycol) (PEG) are synthesized by multibranching anionic ring opening polymerization. Multivalent cationic sites are added to these polymers by a post-amination and quarternization reactions. Blood compatibility studies using these polymers at different concentrations showed insignificant effects on complement activation, platelet activation, coagulation, erythrocyte aggregation and hemolysis compared to branched cationic polyethyleneimine (PEI). The degree of quarternization does not have large influence on the blood compatibility of the new polymers. Cytotoxicity of these polymers is significantly lower than that of PEI and is a function of quarternized nitrogen present in the polymer. Also, these polymers bind DNA in the nanomolar range and are able to condense DNA to highly compact, stable, water soluble nanoparticles in the range of 60-80 nm. Gel electrophoresis studies showed that they form electroneutral complexes with DNA around N/P ratio 1 irrespective of the percentage of quarternization under the conditions studied.

Research paper thumbnail of MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic β-actin gene

Nucleic Acids Research, 2008

Actin is a major cytoskeletal protein in eukaryotes. Recent studies suggest more diverse function... more Actin is a major cytoskeletal protein in eukaryotes. Recent studies suggest more diverse functional roles for this protein. Actin mRNA is known to be localized to neuronal synapses and undergoes rapid deadenylation during early developmental stages. However, its 3'-untranslated region (UTR) is not characterized and there are no experimentally determined polyadenylation (polyA) sites in actin mRNA. We have found that the cytoplasmic b-actin (Actb) gene generates two alternative transcripts terminated at tandem polyA sites. We used 3'-RACE, EST end analysis and in situ hybridization to unambiguously establish the existence of two 3'-UTRs of varying length in Actb transcript in mouse neuronal cells. Further analyses showed that these two tandem polyA sites are used in a tissue-specific manner. Although the longer 3'-UTR was expressed at a relatively lower level, it conferred higher translational efficiency to the transcript. The longer transcript harbours a conserved mmu-miR-34a/34b-5p target site. Sequencespecific anti-miRNA molecule, mutations of the miRNA target region in the 3'-UTR resulted in reduced expression. The expression was restored by a mutant miRNA complementary to the mutated target region implying that miR-34 binding to Actb 3'-UTR up-regulates target gene expression. Heterogeneity of the Actb 3'-UTR could shed light on the mechanism of miRNA-mediated regulation of messages in neuronal cells.

Research paper thumbnail of A retroviral origin of vertebrate myelin

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in t... more Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains and greater morphological diversity. Here we report that RNA level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show RNLTR12-int-encoded non-coding RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin). RNLTR12-int like sequences (which we name RetroMyelin) are found in all jawed-vertebrates and also regulate myelination in zebrafish, suggesting retroviral endogenization as a key step in the emergence of vertebrate myelin.

Research paper thumbnail of Myc determines the functional age state of oligodendrocyte progenitor cells

Research paper thumbnail of Correction to: Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system

Acta Neuropathologica

The article Niacin‑mediated rejuvenation of macrophage/microglia enhances remyelination of the ag... more The article Niacin‑mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system, written by Khalil S. Rawji, Adam M.H. Young, Tanay Ghosh, Nathan J. Michaels, Reza Mirzaei, Janson Kappen, Kathleen L. Kolehmainen, Nima Alaeiilkhchi, Brian Lozinski, Manoj K. Mishra, Annie Pu, Weiwen Tang, Salma Zein, Deepak K. Kaushik, Michael B. Keough, Jason R. Plemel, Fiona Calvert, Andrew J. Knights, Daniel J. Gaffney, Wolfram Tetzlaff, Robin J. M. Franklin and V. Wee Yong, was originally published electronically on the publisher’s internet.

Research paper thumbnail of Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system

Acta Neuropathologica

Remyelination following CNS demyelination restores rapid signal propagation and protects axons; h... more Remyelination following CNS demyelination restores rapid signal propagation and protects axons; however, its efficiency declines with increasing age. Both intrinsic changes in the oligodendrocyte progenitor cell population and extrinsic factors in the lesion microenvironment of older subjects contribute to this decline. Microglia and monocyte-derived macrophages are critical for successful remyelination, releasing growth factors and clearing inhibitory myelin debris. Several studies have implicated delayed recruitment of macrophages/microglia into lesions as a key contributor to the decline in remyelination observed in older subjects. Here we show that the decreased expression of the scavenger receptor CD36 of aging mouse microglia and human microglia in culture underlies their reduced phagocytic activity. Overexpression of CD36 in cultured microglia rescues the deficit in phagocytosis of myelin debris. By screening for clinically approved agents that stimulate macrophages/microglia, we have found that niacin (vitamin B3) upregulates CD36 expression and enhances myelin phagocytosis by microglia in culture. This increase in myelin phagocytosis is mediated through the niacin receptor (hydroxycarboxylic acid receptor 2). Genetic fate mapping and multiphoton live imaging show that systemic treatment of 9-12-month-old demyelinated mice with therapeutically relevant doses of niacin promotes myelin debris clearance in lesions by both peripherally derived macrophages and microglia. This is accompanied by enhancement of oligodendrocyte progenitor cell numbers and by improved remyelination in the treated mice. Niacin represents a safe and translationally amenable regenerative therapy for chronic demyelinating diseases such as multiple sclerosis.

Research paper thumbnail of ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration

Journal of Clinical Investigation

Research paper thumbnail of Altered social behavior in mice carrying a cortical Foxp2 deletion

Research paper thumbnail of microRNA dysregulation in polyglutamine toxicity of TATA-box binding protein is mediated through STAT1 in mouse neuronal cells

Journal of Neuroinflammation

Background: Polyglutamine diseases constitute a class of neurodegenerative disorders associated w... more Background: Polyglutamine diseases constitute a class of neurodegenerative disorders associated with expansion of the cytosine-adenine-guanine (CAG) triplet, in protein coding genes. Expansion of a polyglutamine tract in the N-terminal of TBP is the causal mutation in SCA17. Brain sections of patients with spinocerebellar ataxia 17 (SCA17), a type of neurodegenerative disease, have been reported to contain protein aggregates of TATA-binding protein (TBP). It is also implicated in other neurodegenerative diseases like Huntington's disease, since the protein aggregates formed in such diseases also contain TBP. Dysregulation of miR-29a/b is another common feature of neurodegenerative diseases including Alzheimer's disease, Huntington's disease, and SCA17. Using a cellular model of SCA17, we identified key connections in the molecular pathway from protein aggregation to miRNA dysregulation. Methods: Gene expression profiling was performed subsequent to the expression of TBP containing polyglutamine in a cellular model of SCA17. We studied the expression of STAT1 and other interferon-gamma dependent genes in neuronal apoptosis. The molecular pathway leading to the dysregulation of miRNA in response of protein aggregation and interferon release was investigated using RNAi-mediated knockdown of STAT1. Results: We show that the accumulation of polyglutamine-TBP in the cells results in interferon-gamma release which in turn signals through STAT1 leading to downregulation of miR-29a/b. We propose that the release of interferons by cells harboring toxic protein aggregates may trigger a bystander effect resulting in loss of neurons. Interferon-gamma also led to upregulation of miR-322 although this effect is not mediated through STAT1. Conclusions: Our investigation shows that neuroinflammation could be an important player in mediating the transcriptional dysregulation of miRNA and the subsequent apoptotic effect of toxic polyglutamine-TBP. The involvement of immunomodulators in polyglutamine diseases holds special therapeutic relevance in the light of recent findings that interferon-gamma can modulate behavior.

Research paper thumbnail of MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis

Cell Reports, 2014

Over the course of cortical neurogenesis, the transition of progenitors from proliferation to dif... more Over the course of cortical neurogenesis, the transition of progenitors from proliferation to differentiation requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neurogenesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regulation between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual susceptibilities for genetically complex neuropsychiatric disorders.

Research paper thumbnail of TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex

Nature Communications

Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogen... more Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate progenitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex. TBR2 removal leads to a significant reduction in neuronal, but not glial, output of individual radial glial progenitors as revealed by mosaic analysis with double markers. Moreover, in the absence of TBR2, clonally related excitatory neurons become more laterally dispersed and their preferential synapse development is impaired. Interestingly, TBR2 directly regulates the expression of Protocadherin 19 (PCDH19), and simultaneous PCDH19 expression rescues neurogenesis and neuronal organization defects caused by TBR2 removal. Together, these results suggest that TBR2 coordinates neurogenesis expansion and precise microcircuit assembly via PCDH19 in the mammalian cortex.