Ewa Golonka - Academia.edu (original) (raw)

Papers by Ewa Golonka

Research paper thumbnail of Identification and Characterization of σS, a Novel Component of the Staphylococcus aureus Stress and Virulence Responses

PLoS ONE, 2008

S. aureus is a highly successful pathogen that is speculated to be the most common cause of human... more S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (s S), that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that s S is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that s S is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a s S mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days), or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination, as determined by bacterial loads in the kidneys of infected animals. These results establish that s S is an important component in S. aureus fitness, and in its adaptation to stress. Additionally it appears to have a significant role in its pathogenic nature, and likely represents a key component in the S. aureus regulatory network.

Research paper thumbnail of Fighting an enemy within: cytoplasmic inhibitors of bacterial cysteine proteases

Molecular Microbiology, 2005

Research paper thumbnail of Genetic characterization of staphopain genes in Staphylococcus aureus

Biological Chemistry, 2000

Staphylococcus aureus, a leading cause of bacterial infections in humans, is endowed with a wealt... more Staphylococcus aureus, a leading cause of bacterial infections in humans, is endowed with a wealth of virulence factors that contribute to the disease process. Several extracellular proteolytic enzymes, including cysteine proteinases referred to as the staphopains (staphopain A, encoded by the scpA gene, and staphopain B, encoded by sspB), have proposed roles for staphylococcal virulence. Here we present data regarding the distribution, copy number and genetic variability of the genes encoding the staphopains in a large number of S. aureus strains. The polymorphism of the scpA and sspB genes in three laboratory strains and 126 clinical isolates was analyzed by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP). Both genes were detected in all isolates by PCR amplification and, based on the PCR-RFLP patterns, classified as four types for scpA and six types for sspB. Those with the most divergent patterns were subjected to DNA sequencing and compared with ...

Research paper thumbnail of Cytoplasmic control of premature activation of a secreted protease zymogen: deletion of staphostatin B (SspC) in Staphylococcus aureus 8325-4 yields a profound …

Journal of …, 2005

The cytoplasmic protein SspC of Staphylococcus aureus, referred to as staphostatin B, is a very s... more The cytoplasmic protein SspC of Staphylococcus aureus, referred to as staphostatin B, is a very specific, tightly binding inhibitor of the secreted protease staphopain B (SspB). SspC is hypothesized to protect intracellular proteins against proteolytic damage by prematurely folded and activated staphopain B (M. Rzychon, A. Sabat, K. Kosowska, J. Potempa, and A. Dubin, Mol. Microbiol. 49:1051-1066, 2003). Here we provide evidence that elimination of intracellular staphopain B activity is indeed the function of SspC. An isogenic sspC mutant of S. aureus 8325-4 exhibits a wide range of striking pleiotropic alterations in phenotype, which distinguish it from the parent. These changes include a defect in growth, a less structured peptidoglycan layer within the cell envelope, severely decreased autolytic activity, resistance to lysis by S. aureus phages, extensively diminished sensitivity to lysis by lysostaphin, the ability to form a biofilm, and a total lack of extracellular proteins secreted into the growth media. The same phenotype was also engineered by introduction of sspB into an 8325-4 sspBC mutant. In contrast, sspC inactivation in the SH1000 strain did not yield any significant changes in the mutant phenotype, apparently due to strongly reduced expression of sspB in the sigma B-positive background. The exact pathway by which these diverse aberrations are exerted in 8325-4 is unknown, but it is apparent that a very small amount of staphopain B (less than 20 ng per 200 μg of cell proteins) is sufficient to bring about these widespread changes. It is proposed that the effects observed are modulated through the proteolytic degradation of several cytoplasmic proteins within cells lacking the inhibitor. Seemingly, some of these proteins may play a role in protein secretion; hence, their proteolytic inactivation by SspB has pleiotropic effects on the SspC-deficient mutant.

Research paper thumbnail of Identification and Characterization of σS, a Novel Component of the Staphylococcus aureus Stress and Virulence Responses

PLoS ONE, 2008

S. aureus is a highly successful pathogen that is speculated to be the most common cause of human... more S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (s S), that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that s S is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that s S is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a s S mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days), or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination, as determined by bacterial loads in the kidneys of infected animals. These results establish that s S is an important component in S. aureus fitness, and in its adaptation to stress. Additionally it appears to have a significant role in its pathogenic nature, and likely represents a key component in the S. aureus regulatory network.

Research paper thumbnail of Fighting an enemy within: cytoplasmic inhibitors of bacterial cysteine proteases

Molecular Microbiology, 2005

Research paper thumbnail of Genetic characterization of staphopain genes in Staphylococcus aureus

Biological Chemistry, 2000

Staphylococcus aureus, a leading cause of bacterial infections in humans, is endowed with a wealt... more Staphylococcus aureus, a leading cause of bacterial infections in humans, is endowed with a wealth of virulence factors that contribute to the disease process. Several extracellular proteolytic enzymes, including cysteine proteinases referred to as the staphopains (staphopain A, encoded by the scpA gene, and staphopain B, encoded by sspB), have proposed roles for staphylococcal virulence. Here we present data regarding the distribution, copy number and genetic variability of the genes encoding the staphopains in a large number of S. aureus strains. The polymorphism of the scpA and sspB genes in three laboratory strains and 126 clinical isolates was analyzed by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP). Both genes were detected in all isolates by PCR amplification and, based on the PCR-RFLP patterns, classified as four types for scpA and six types for sspB. Those with the most divergent patterns were subjected to DNA sequencing and compared with ...

Research paper thumbnail of Cytoplasmic control of premature activation of a secreted protease zymogen: deletion of staphostatin B (SspC) in Staphylococcus aureus 8325-4 yields a profound …

Journal of …, 2005

The cytoplasmic protein SspC of Staphylococcus aureus, referred to as staphostatin B, is a very s... more The cytoplasmic protein SspC of Staphylococcus aureus, referred to as staphostatin B, is a very specific, tightly binding inhibitor of the secreted protease staphopain B (SspB). SspC is hypothesized to protect intracellular proteins against proteolytic damage by prematurely folded and activated staphopain B (M. Rzychon, A. Sabat, K. Kosowska, J. Potempa, and A. Dubin, Mol. Microbiol. 49:1051-1066, 2003). Here we provide evidence that elimination of intracellular staphopain B activity is indeed the function of SspC. An isogenic sspC mutant of S. aureus 8325-4 exhibits a wide range of striking pleiotropic alterations in phenotype, which distinguish it from the parent. These changes include a defect in growth, a less structured peptidoglycan layer within the cell envelope, severely decreased autolytic activity, resistance to lysis by S. aureus phages, extensively diminished sensitivity to lysis by lysostaphin, the ability to form a biofilm, and a total lack of extracellular proteins secreted into the growth media. The same phenotype was also engineered by introduction of sspB into an 8325-4 sspBC mutant. In contrast, sspC inactivation in the SH1000 strain did not yield any significant changes in the mutant phenotype, apparently due to strongly reduced expression of sspB in the sigma B-positive background. The exact pathway by which these diverse aberrations are exerted in 8325-4 is unknown, but it is apparent that a very small amount of staphopain B (less than 20 ng per 200 μg of cell proteins) is sufficient to bring about these widespread changes. It is proposed that the effects observed are modulated through the proteolytic degradation of several cytoplasmic proteins within cells lacking the inhibitor. Seemingly, some of these proteins may play a role in protein secretion; hence, their proteolytic inactivation by SspB has pleiotropic effects on the SspC-deficient mutant.