Farhat Gul - Academia.edu (original) (raw)

Papers by Farhat Gul

Research paper thumbnail of Environmentally friendly green approach for the fabrication of silver oxide nanoparticles: Characterization and diverse biomedical applications

Microscopy Research and Technique, 2020

In the present study, green silver nanoparticles (Ag 2 ONPs) were prepared from aqueous and ethan... more In the present study, green silver nanoparticles (Ag 2 ONPs) were prepared from aqueous and ethanolic leaves extract of Rhamnus virgata in a facile, green, cost-effective, and eco-friendly way. The color changes from light brown to brownish black determined the synthesis of Ag 2 ONPs (Aq) and Ag 2 ONPs (Et). The phytofabrication of Ag 2 ONPs was confirmed using various spectroscopic and microscopic techniques: energy-dispersive X-ray spectroscopy, dynamic light scattering, ultraviolet-visible spectroscopy, Fouriertransform infrared, X-ray powder diffraction, Raman, scanning electron microscopy, and transmission electron microscopy. Detailed in vitro biological activities determined significant biopotentials for Ag 2 ONPs. The Ag 2 ONPs (Aq) and Ag 2 ONPs (Et) were investigated for anticancer potential against HUH-7 (IC 50 : 9.075 μg/ml for Ag 2 O (Aq) and 25.66 μg/ml for Ag 2 O (Et)) and HepG2 (IC 50 : 25.18 μg/ml for Ag 2 O (Aq) and IC 50 : 27.74 μg/ml for Ag 2 O (Aq)) cell lines. Concentration-dependent cytotoxicity was performed against brineshrimps (IC 50 : 36.04 μg/ml for Ag 2 O (Aq) and 28.82 μg/ml for Ag 2 O (Et)) and Leishmanial parasite (amastigotes and promastigotes). Disc-diffusion method revealed significant antimicrobial activities. In addition, significant enzyme inhibitory activity and antiradical potentials were studied. The hemocompatible nature of Ag 2 ONPs (Aq) and Ag 2 ONPs (Et) was revealed using biocompatibility tests. In conclusion, the green Ag 2 ONPs (Aq) and Ag 2 ONPs (Et) are nontoxic and biocompatible and has shown significant biological activities. We further encourage in vivo studies to ensure biosafety and biocompatibility, so that they can be effectively utilized in nano-pharmaceutical industries.

Research paper thumbnail of Potential phytochemicals in the prevention and treatment of esophagus cancer: A green therapeutic approach

Pharmacological Reports, 2019

Globally, esophagus cancer (EC) is one of the most frequently reported malignancies and leading c... more Globally, esophagus cancer (EC) is one of the most frequently reported malignancies and leading cause of deaths. Currently, different treatment methods are available like chemotherapy, radiation therapy, surgery or their combination. These treatment strategies are not enough and are often associated with adverse side effects. The alternate treatment option like phytochemicals have come up with ease of bioavailability and cost-effectiveness. Due to general acceptance, lower side effects, safety and pleiotropic effect, phytochemicals can be used as an adjuvant treatment for alleviating side effects associated with chemotherapy and radiotherapy. Phytochemicals perform multiple functions; release cytochrome-c, loss mitochondrial membrane potential, down-regulate expression of anti-apoptotic proteins, up-regulate pro-apoptotic proteins, activate caspases, p53, inhibit Akt/mTOR signaling pathway, phosphorylate NF-kB, STAT3 and PI3K. The knowledge compiled here encompasses anti-EC phytochemicals, their occurrence, bioavailability therapeutic effects and mechanism of action by targeting several genes and signaling pathways. Overall, the clinical data compiled on phytochemicals against EC is not sufficient and need future research to provide additional insights for developing potential anticancer drugs in pharma industries.

Research paper thumbnail of Phytochemistry, biological activities and in silico molecular docking studies of Oxalis pes-caprae L. compounds against SARS-CoV-2

Journal of King Saud University - Science

Research paper thumbnail of Environmentally friendly green approach for the fabrication of silver oxide nanoparticles: Characterization and diverse biomedical applications

Microscopy Research and Technique, 2020

In the present study, green silver nanoparticles (Ag 2 ONPs) were prepared from aqueous and ethan... more In the present study, green silver nanoparticles (Ag 2 ONPs) were prepared from aqueous and ethanolic leaves extract of Rhamnus virgata in a facile, green, cost-effective, and eco-friendly way. The color changes from light brown to brownish black determined the synthesis of Ag 2 ONPs (Aq) and Ag 2 ONPs (Et). The phytofabrication of Ag 2 ONPs was confirmed using various spectroscopic and microscopic techniques: energy-dispersive X-ray spectroscopy, dynamic light scattering, ultraviolet-visible spectroscopy, Fouriertransform infrared, X-ray powder diffraction, Raman, scanning electron microscopy, and transmission electron microscopy. Detailed in vitro biological activities determined significant biopotentials for Ag 2 ONPs. The Ag 2 ONPs (Aq) and Ag 2 ONPs (Et) were investigated for anticancer potential against HUH-7 (IC 50 : 9.075 μg/ml for Ag 2 O (Aq) and 25.66 μg/ml for Ag 2 O (Et)) and HepG2 (IC 50 : 25.18 μg/ml for Ag 2 O (Aq) and IC 50 : 27.74 μg/ml for Ag 2 O (Aq)) cell lines. Concentration-dependent cytotoxicity was performed against brineshrimps (IC 50 : 36.04 μg/ml for Ag 2 O (Aq) and 28.82 μg/ml for Ag 2 O (Et)) and Leishmanial parasite (amastigotes and promastigotes). Disc-diffusion method revealed significant antimicrobial activities. In addition, significant enzyme inhibitory activity and antiradical potentials were studied. The hemocompatible nature of Ag 2 ONPs (Aq) and Ag 2 ONPs (Et) was revealed using biocompatibility tests. In conclusion, the green Ag 2 ONPs (Aq) and Ag 2 ONPs (Et) are nontoxic and biocompatible and has shown significant biological activities. We further encourage in vivo studies to ensure biosafety and biocompatibility, so that they can be effectively utilized in nano-pharmaceutical industries.

Research paper thumbnail of Potential phytochemicals in the prevention and treatment of esophagus cancer: A green therapeutic approach

Pharmacological Reports, 2019

Globally, esophagus cancer (EC) is one of the most frequently reported malignancies and leading c... more Globally, esophagus cancer (EC) is one of the most frequently reported malignancies and leading cause of deaths. Currently, different treatment methods are available like chemotherapy, radiation therapy, surgery or their combination. These treatment strategies are not enough and are often associated with adverse side effects. The alternate treatment option like phytochemicals have come up with ease of bioavailability and cost-effectiveness. Due to general acceptance, lower side effects, safety and pleiotropic effect, phytochemicals can be used as an adjuvant treatment for alleviating side effects associated with chemotherapy and radiotherapy. Phytochemicals perform multiple functions; release cytochrome-c, loss mitochondrial membrane potential, down-regulate expression of anti-apoptotic proteins, up-regulate pro-apoptotic proteins, activate caspases, p53, inhibit Akt/mTOR signaling pathway, phosphorylate NF-kB, STAT3 and PI3K. The knowledge compiled here encompasses anti-EC phytochemicals, their occurrence, bioavailability therapeutic effects and mechanism of action by targeting several genes and signaling pathways. Overall, the clinical data compiled on phytochemicals against EC is not sufficient and need future research to provide additional insights for developing potential anticancer drugs in pharma industries.

Research paper thumbnail of Phytochemistry, biological activities and in silico molecular docking studies of Oxalis pes-caprae L. compounds against SARS-CoV-2

Journal of King Saud University - Science