Hassen Boudebous - Academia.edu (original) (raw)
Papers by Hassen Boudebous
Journal of Physical Chemistry A, Mar 28, 2007
Journal of Photochemistry and Photobiology A-chemistry, Sep 1, 2008
Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofura... more Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofuran. In MeOH some traces of solvent addition to the benzoyl radical formed by α-cleavage were detected. In trifluoroethanol several products are due to direct α-cleavage. Only 3% of 2-phenylbenzofuran and 13% of the α-ketocation solvent adduct are formed. The triplet state of 1 observed in nanosecond experiment at low temperature has been confirmed in femtosecond experiment. The triplet is formed quite fast at 370nm (rise time 4.5ps in acetonitrile and 22ps in trifluoroethanol) and is stable up to 1.9ns (a lifetime of 20ns has been determined by quenching experiments with naphthalene).
Angewandte Chemie, Apr 21, 2008
Angewandte Chemie, Apr 21, 2008
Dedicated to Professor Andreas Pfaltz on the occasion of his 60th birthday Electron transfer (ET)... more Dedicated to Professor Andreas Pfaltz on the occasion of his 60th birthday Electron transfer (ET) processes through proteins play an important role in many biological reactions. Seminal work by Gray and Winkler on Ru-modified proteins, such as cytochromes and azurine, has shown that long-distance ET can occur over more than 20. [1, 2] Beratan and Onuchic developed a "pathway model", [3] which explains ET through these proteins by single-step superexchange (tunneling) reactions. The model comprises a "family of pathways" involving ET through s bonds, through hydrogen bridges, and through space. [4] In contrast, Stubbe, Nocera, et al. explained longdistance ET through ribonucleotide reductase by a multistep hopping mechanism, where electrons hop between aromatic side chains of amino acids. [5, 6] These amino acids, which carry the charge for a short time, act as "stepping stones" (relay stations) for long-distance electron transport from the donor to the acceptor. [7] For consecutive reactions of this kind, [8] oxidized donor, acceptor, and relay amino acids should in principle be present at the same time during the ET process. We have now developed a model peptide, where the simultaneous existence of all the oxidized intermediates (oxidized amino acid side chains) could be proven spectroscopically for the first time. To test the influence of aromatic amino acids on longdistance electron transfer (ET) in peptides we synthesized model systems 1 ad , [9] in which three amino acids are separated from each other by triproline sequences (Scheme 1). A positive charge was selectively injected into the aromatic side chain of the C-terminal amino acid (1!2), which then served as the electron acceptor. A tyrosine residue at the N terminus, about 20 away, [10] functioned as the electron donor. Halfway between the donor and the acceptor we introduced an amino acid with either an aliphatic or an aromatic side chain X (Scheme 1). The function of the charge injection system at the Cterminal amino acid of molecules 1 ad is depicted in Scheme 2. Photocleavage of the ketone leads to radical 4, which undergoes a heterolytic b fragmentation (4!5) to give a radical cation 5, [11] which then selectively oxidizes the attached aromatic ring (5!2). The transient absorption spectrum of the electron acceptor in 2 shows a maximum at 450 nm (Figure 1). The signal of 2 vanishes as a consequence of electron transfer from tyrosine (2!3), which deprotonates upon oxidation and yields a tyrosyl radical (Figure 1). The acceptor radical cations 2 ad were generated by laser flash photolysis (LFP) of the precursors 1 ad , [12] and the transient absorption spectra were measured 40 ns after the laser flash. [13] To check whether intermolecular ET already competes with intramo-Scheme 1. Injection of a positive charge into the C-terminal aromatic amino acid of an oligopeptide and subsequent electron transfer from the N-terminal tyrosine residue.
Angewandte Chemie, Apr 21, 2008
Professor Andreas Pfaltz zum 60. Geburtstag gewidmet Elektronentransfer(ET)-Prozesse durch Protei... more Professor Andreas Pfaltz zum 60. Geburtstag gewidmet Elektronentransfer(ET)-Prozesse durch Proteine sind von entscheidender Bedeutung für eine Vielzahl von biologischen Reaktionen. Bahnbrechende Arbeiten von Gray und Winkler an Ru-modifizierten Proteinen, wie Cytochromen und Azurinen, haben gezeigt, dass weitreichender ET über Distanzen von mehr als 20 möglich ist. [1, 2] Beratan und Onuchic entwickelten ein Tunnel-Pfad-Modell, das den ET durch diese Proteine über einen einstufigen Superaustauschmechanismus erklärt. [3] Nach diesem Mechanismus kann eine Gruppe von ET-Pfaden, bestehend aus s-Bindungen, Wasserstoffbrücken und "Durch-den-Raum"-Kontakten, zum ET beitragen. [4] Stubbe und Nocera hingegen erklären den weitreichenden ET durch das Enzym Ribonucleotid-Reduktase mit einem mehrstufigen Hopping-Mechanismus, in dessen Verlauf die Elektronen zwischen aromatischen Aminosäureseitenketten "hüpfen". [5, 6] Diese Aminosäuren, auf denen die Ladung für kurze Zeit verweilt, agieren als Zwischenstationen (Relais) für den weitreichenden ET vom Elektronendonor zum Akzeptor. [7] In Folgereaktionen dieser Art [8] sollten die oxidierten Formen von Donor, Akzeptor und Relais während des ET-Prozesses gleichzeitig vorliegen. Wir haben ein Peptidmodell entwickelt, mit dem der gleichzeitige spektroskopische Nachweis aller oxidierten Zwischenstufen (oxidierte Aminosäureseitenketten) zum ersten Mal möglich war. Um den Einfluss aromatischer Aminosäuren auf den weitreichenden Elektronentransfer (ET) in Peptiden zu untersuchen, haben wir die Peptidmodelle 1 ad synthetisiert, [9] in denen drei Aminosäuren voneinander jeweils durch Triprolinsequenzen getrennt sind (Schema 1). In die aromatische Seitenkette der C-terminalen Aminosäure ließ sich selektiv eine positive Ladung injizieren (1!2), um einen Elektronenakzeptor zu erzeugen. Am etwa 20 entfernten N-Terminus [10] stand Tyrosin als Elektronendonor zur Verfügung. Mittig zwischen Donor und Akzeptor platzierten wir eine Aminosäure mit aliphatischer oder aromatischer Seitenkette X (Schema 1). Die Funktionsweise des Injektionssystems an der C-terminalen Aminosäure der Peptide 1 ad ist in Schema 2 dargestellt. Photolyse des Ketons führt dabei zu Radikal 4, das in einer heterolytischen b-Fragmentierung (4!5) zum Radikalkation 5 zerfällt, [11] welches anschließend selektiv den angrenzenden aromatischen Ring oxidiert (5!2). Das Transienten-Absorptionsspektrum des Elektronenakzeptors in 2 weist ein Maximum bei 450 nm auf (Abbildung 1). Schema 1. Injektion einer positiven Ladung in die C-terminale Aminosäure eines Oligopeptids und anschließender ET vom N-terminalen Tyrosin.
Angewandte Chemie, Apr 21, 2008
Advanced Synthesis & Catalysis, May 5, 2008
We have designed and synthesized a peptide model in which stepwise electron transfer (ET) through... more We have designed and synthesized a peptide model in which stepwise electron transfer (ET) through amino acid side chains could be observed. An injection system, which generates an electron hole upon laser irradiation, was connected directly to the aromatic side chain of a modified C-terminal amino acid. This electron acceptor could be observed by transient absorption spectroscopy. The N-terminal amino acid tyrosine acts as an electron donor, giving a different signal in the transient absorption spectrum. Additional non-natural oxidizable aromatic amino acids were synthesized as spectroscopic sensors to detect oxidized amino acid side chains as chemical intermediates in long range ET.
Advanced Synthesis & Catalysis, 2008
We have designed and synthesized a peptide model in which stepwise electron transfer (ET) through... more We have designed and synthesized a peptide model in which stepwise electron transfer (ET) through amino acid side chains could be observed. An injection system, which generates an electron hole upon laser irradiation, was connected directly to the aromatic side chain of a modified C-terminal amino acid. This electron acceptor could be observed by transient absorption spectroscopy. The N-terminal amino acid tyrosine acts as an electron donor, giving a different signal in the transient absorption spectrum. Additional non-natural oxidizable aromatic amino acids were synthesized as spectroscopic sensors to detect oxidized amino acid side chains as chemical intermediates in long range ET.
Angewandte Chemie, 2008
Professor Andreas Pfaltz zum 60. Geburtstag gewidmet Elektronentransfer(ET)-Prozesse durch Protei... more Professor Andreas Pfaltz zum 60. Geburtstag gewidmet Elektronentransfer(ET)-Prozesse durch Proteine sind von entscheidender Bedeutung für eine Vielzahl von biologischen Reaktionen. Bahnbrechende Arbeiten von Gray und Winkler an Ru-modifizierten Proteinen, wie Cytochromen und Azurinen, haben gezeigt, dass weitreichender ET über Distanzen von mehr als 20 möglich ist. [1, 2] Beratan und Onuchic entwickelten ein Tunnel-Pfad-Modell, das den ET durch diese Proteine über einen einstufigen Superaustauschmechanismus erklärt. [3] Nach diesem Mechanismus kann eine Gruppe von ET-Pfaden, bestehend aus s-Bindungen, Wasserstoffbrücken und "Durch-den-Raum"-Kontakten, zum ET beitragen. [4] Stubbe und Nocera hingegen erklären den weitreichenden ET durch das Enzym Ribonucleotid-Reduktase mit einem mehrstufigen Hopping-Mechanismus, in dessen Verlauf die Elektronen zwischen aromatischen Aminosäureseitenketten "hüpfen". [5, 6] Diese Aminosäuren, auf denen die Ladung für kurze Zeit verweilt, agieren als Zwischenstationen (Relais) für den weitreichenden ET vom Elektronendonor zum Akzeptor. [7] In Folgereaktionen dieser Art [8] sollten die oxidierten Formen von Donor, Akzeptor und Relais während des ET-Prozesses gleichzeitig vorliegen. Wir haben ein Peptidmodell entwickelt, mit dem der gleichzeitige spektroskopische Nachweis aller oxidierten Zwischenstufen (oxidierte Aminosäureseitenketten) zum ersten Mal möglich war. Um den Einfluss aromatischer Aminosäuren auf den weitreichenden Elektronentransfer (ET) in Peptiden zu untersuchen, haben wir die Peptidmodelle 1 ad synthetisiert, [9] in denen drei Aminosäuren voneinander jeweils durch Triprolinsequenzen getrennt sind (Schema 1). In die aromatische Seitenkette der C-terminalen Aminosäure ließ sich selektiv eine positive Ladung injizieren (1!2), um einen Elektronenakzeptor zu erzeugen. Am etwa 20 entfernten N-Terminus [10] stand Tyrosin als Elektronendonor zur Verfügung. Mittig zwischen Donor und Akzeptor platzierten wir eine Aminosäure mit aliphatischer oder aromatischer Seitenkette X (Schema 1). Die Funktionsweise des Injektionssystems an der C-terminalen Aminosäure der Peptide 1 ad ist in Schema 2 dargestellt. Photolyse des Ketons führt dabei zu Radikal 4, das in einer heterolytischen b-Fragmentierung (4!5) zum Radikalkation 5 zerfällt, [11] welches anschließend selektiv den angrenzenden aromatischen Ring oxidiert (5!2). Das Transienten-Absorptionsspektrum des Elektronenakzeptors in 2 weist ein Maximum bei 450 nm auf (Abbildung 1). Schema 1. Injektion einer positiven Ladung in die C-terminale Aminosäure eines Oligopeptids und anschließender ET vom N-terminalen Tyrosin.
Angewandte Chemie International Edition, 2008
Angewandte Chemie International Edition, 2008
Angewandte Chemie-international Edition - ANGEW CHEM INT ED, 2005
Skip to Main Content. Online Library is experiencing intermittent brief disruptions when loading ... more Skip to Main Content. Online Library is experiencing intermittent brief disruptions when loading some pages - this is currently under investigation. ...
... I thank Prof. Dr. Martin Jungen for agreeing to act as chairman of the thesis committee. A sp... more ... I thank Prof. Dr. Martin Jungen for agreeing to act as chairman of the thesis committee. A special thanks for the members of the Wirz group: Anna Paola Pellicioli, Martin Gaplovsky, Markus Ramseier, Bruno Hellrung, Gaby Persy, ...
Journal of Photochemistry and Photobiology A: Chemistry, 2008
Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofura... more Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofuran. In MeOH some traces of solvent addition to the benzoyl radical formed by α-cleavage were detected. In trifluoroethanol several products are due to direct α-cleavage. Only 3% of 2-phenylbenzofuran and 13% of the α-ketocation solvent adduct are formed. The triplet state of 1 observed in nanosecond experiment at low temperature has been confirmed in femtosecond experiment. The triplet is formed quite fast at 370nm (rise time 4.5ps in acetonitrile and 22ps in trifluoroethanol) and is stable up to 1.9ns (a lifetime of 20ns has been determined by quenching experiments with naphthalene).
Journal of Photochemistry and Photobiology a Chemistry, Sep 1, 2008
Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofura... more Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofuran. In MeOH some traces of solvent addition to the benzoyl radical formed by α-cleavage were detected. In trifluoroethanol several products are due to direct α-cleavage. Only 3% of 2-phenylbenzofuran and 13% of the α-ketocation solvent adduct are formed. The triplet state of 1 observed in nanosecond experiment at low temperature has been confirmed in femtosecond experiment. The triplet is formed quite fast at 370nm (rise time 4.5ps in acetonitrile and 22ps in trifluoroethanol) and is stable up to 1.9ns (a lifetime of 20ns has been determined by quenching experiments with naphthalene).
The Journal of Physical Chemistry a, May 1, 2007
3',5&... more 3',5'-dimethoxybenzoin (DMB) is an important photoremovable protecting group. The primary photoreactions of DMB acetate and fluoride following photoexcitation by a subpicosecond laser flash were investigated by pump-probe spectroscopy. The primary photoproduct is identified as a preoxetane biradical intermediate that decays by different pathways depending on solvent polarity. In polar solvents (acetonitrile, water), the biradical decays by releasing acetate or fluoride with a lifetime of about 2 ns. Thus, DMB is an excellent protecting group for the investigation of fast processes such as protein folding.
Angewandte Chemie International Edition, 2005
Skip to Main Content. Online Library is experiencing intermittent brief disruptions when loading ... more Skip to Main Content. Online Library is experiencing intermittent brief disruptions when loading some pages - this is currently under investigation. ...
Journal of Physical Chemistry A, Mar 28, 2007
Journal of Photochemistry and Photobiology A-chemistry, Sep 1, 2008
Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofura... more Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofuran. In MeOH some traces of solvent addition to the benzoyl radical formed by α-cleavage were detected. In trifluoroethanol several products are due to direct α-cleavage. Only 3% of 2-phenylbenzofuran and 13% of the α-ketocation solvent adduct are formed. The triplet state of 1 observed in nanosecond experiment at low temperature has been confirmed in femtosecond experiment. The triplet is formed quite fast at 370nm (rise time 4.5ps in acetonitrile and 22ps in trifluoroethanol) and is stable up to 1.9ns (a lifetime of 20ns has been determined by quenching experiments with naphthalene).
Angewandte Chemie, Apr 21, 2008
Angewandte Chemie, Apr 21, 2008
Dedicated to Professor Andreas Pfaltz on the occasion of his 60th birthday Electron transfer (ET)... more Dedicated to Professor Andreas Pfaltz on the occasion of his 60th birthday Electron transfer (ET) processes through proteins play an important role in many biological reactions. Seminal work by Gray and Winkler on Ru-modified proteins, such as cytochromes and azurine, has shown that long-distance ET can occur over more than 20. [1, 2] Beratan and Onuchic developed a "pathway model", [3] which explains ET through these proteins by single-step superexchange (tunneling) reactions. The model comprises a "family of pathways" involving ET through s bonds, through hydrogen bridges, and through space. [4] In contrast, Stubbe, Nocera, et al. explained longdistance ET through ribonucleotide reductase by a multistep hopping mechanism, where electrons hop between aromatic side chains of amino acids. [5, 6] These amino acids, which carry the charge for a short time, act as "stepping stones" (relay stations) for long-distance electron transport from the donor to the acceptor. [7] For consecutive reactions of this kind, [8] oxidized donor, acceptor, and relay amino acids should in principle be present at the same time during the ET process. We have now developed a model peptide, where the simultaneous existence of all the oxidized intermediates (oxidized amino acid side chains) could be proven spectroscopically for the first time. To test the influence of aromatic amino acids on longdistance electron transfer (ET) in peptides we synthesized model systems 1 ad , [9] in which three amino acids are separated from each other by triproline sequences (Scheme 1). A positive charge was selectively injected into the aromatic side chain of the C-terminal amino acid (1!2), which then served as the electron acceptor. A tyrosine residue at the N terminus, about 20 away, [10] functioned as the electron donor. Halfway between the donor and the acceptor we introduced an amino acid with either an aliphatic or an aromatic side chain X (Scheme 1). The function of the charge injection system at the Cterminal amino acid of molecules 1 ad is depicted in Scheme 2. Photocleavage of the ketone leads to radical 4, which undergoes a heterolytic b fragmentation (4!5) to give a radical cation 5, [11] which then selectively oxidizes the attached aromatic ring (5!2). The transient absorption spectrum of the electron acceptor in 2 shows a maximum at 450 nm (Figure 1). The signal of 2 vanishes as a consequence of electron transfer from tyrosine (2!3), which deprotonates upon oxidation and yields a tyrosyl radical (Figure 1). The acceptor radical cations 2 ad were generated by laser flash photolysis (LFP) of the precursors 1 ad , [12] and the transient absorption spectra were measured 40 ns after the laser flash. [13] To check whether intermolecular ET already competes with intramo-Scheme 1. Injection of a positive charge into the C-terminal aromatic amino acid of an oligopeptide and subsequent electron transfer from the N-terminal tyrosine residue.
Angewandte Chemie, Apr 21, 2008
Professor Andreas Pfaltz zum 60. Geburtstag gewidmet Elektronentransfer(ET)-Prozesse durch Protei... more Professor Andreas Pfaltz zum 60. Geburtstag gewidmet Elektronentransfer(ET)-Prozesse durch Proteine sind von entscheidender Bedeutung für eine Vielzahl von biologischen Reaktionen. Bahnbrechende Arbeiten von Gray und Winkler an Ru-modifizierten Proteinen, wie Cytochromen und Azurinen, haben gezeigt, dass weitreichender ET über Distanzen von mehr als 20 möglich ist. [1, 2] Beratan und Onuchic entwickelten ein Tunnel-Pfad-Modell, das den ET durch diese Proteine über einen einstufigen Superaustauschmechanismus erklärt. [3] Nach diesem Mechanismus kann eine Gruppe von ET-Pfaden, bestehend aus s-Bindungen, Wasserstoffbrücken und "Durch-den-Raum"-Kontakten, zum ET beitragen. [4] Stubbe und Nocera hingegen erklären den weitreichenden ET durch das Enzym Ribonucleotid-Reduktase mit einem mehrstufigen Hopping-Mechanismus, in dessen Verlauf die Elektronen zwischen aromatischen Aminosäureseitenketten "hüpfen". [5, 6] Diese Aminosäuren, auf denen die Ladung für kurze Zeit verweilt, agieren als Zwischenstationen (Relais) für den weitreichenden ET vom Elektronendonor zum Akzeptor. [7] In Folgereaktionen dieser Art [8] sollten die oxidierten Formen von Donor, Akzeptor und Relais während des ET-Prozesses gleichzeitig vorliegen. Wir haben ein Peptidmodell entwickelt, mit dem der gleichzeitige spektroskopische Nachweis aller oxidierten Zwischenstufen (oxidierte Aminosäureseitenketten) zum ersten Mal möglich war. Um den Einfluss aromatischer Aminosäuren auf den weitreichenden Elektronentransfer (ET) in Peptiden zu untersuchen, haben wir die Peptidmodelle 1 ad synthetisiert, [9] in denen drei Aminosäuren voneinander jeweils durch Triprolinsequenzen getrennt sind (Schema 1). In die aromatische Seitenkette der C-terminalen Aminosäure ließ sich selektiv eine positive Ladung injizieren (1!2), um einen Elektronenakzeptor zu erzeugen. Am etwa 20 entfernten N-Terminus [10] stand Tyrosin als Elektronendonor zur Verfügung. Mittig zwischen Donor und Akzeptor platzierten wir eine Aminosäure mit aliphatischer oder aromatischer Seitenkette X (Schema 1). Die Funktionsweise des Injektionssystems an der C-terminalen Aminosäure der Peptide 1 ad ist in Schema 2 dargestellt. Photolyse des Ketons führt dabei zu Radikal 4, das in einer heterolytischen b-Fragmentierung (4!5) zum Radikalkation 5 zerfällt, [11] welches anschließend selektiv den angrenzenden aromatischen Ring oxidiert (5!2). Das Transienten-Absorptionsspektrum des Elektronenakzeptors in 2 weist ein Maximum bei 450 nm auf (Abbildung 1). Schema 1. Injektion einer positiven Ladung in die C-terminale Aminosäure eines Oligopeptids und anschließender ET vom N-terminalen Tyrosin.
Angewandte Chemie, Apr 21, 2008
Advanced Synthesis & Catalysis, May 5, 2008
We have designed and synthesized a peptide model in which stepwise electron transfer (ET) through... more We have designed and synthesized a peptide model in which stepwise electron transfer (ET) through amino acid side chains could be observed. An injection system, which generates an electron hole upon laser irradiation, was connected directly to the aromatic side chain of a modified C-terminal amino acid. This electron acceptor could be observed by transient absorption spectroscopy. The N-terminal amino acid tyrosine acts as an electron donor, giving a different signal in the transient absorption spectrum. Additional non-natural oxidizable aromatic amino acids were synthesized as spectroscopic sensors to detect oxidized amino acid side chains as chemical intermediates in long range ET.
Advanced Synthesis & Catalysis, 2008
We have designed and synthesized a peptide model in which stepwise electron transfer (ET) through... more We have designed and synthesized a peptide model in which stepwise electron transfer (ET) through amino acid side chains could be observed. An injection system, which generates an electron hole upon laser irradiation, was connected directly to the aromatic side chain of a modified C-terminal amino acid. This electron acceptor could be observed by transient absorption spectroscopy. The N-terminal amino acid tyrosine acts as an electron donor, giving a different signal in the transient absorption spectrum. Additional non-natural oxidizable aromatic amino acids were synthesized as spectroscopic sensors to detect oxidized amino acid side chains as chemical intermediates in long range ET.
Angewandte Chemie, 2008
Professor Andreas Pfaltz zum 60. Geburtstag gewidmet Elektronentransfer(ET)-Prozesse durch Protei... more Professor Andreas Pfaltz zum 60. Geburtstag gewidmet Elektronentransfer(ET)-Prozesse durch Proteine sind von entscheidender Bedeutung für eine Vielzahl von biologischen Reaktionen. Bahnbrechende Arbeiten von Gray und Winkler an Ru-modifizierten Proteinen, wie Cytochromen und Azurinen, haben gezeigt, dass weitreichender ET über Distanzen von mehr als 20 möglich ist. [1, 2] Beratan und Onuchic entwickelten ein Tunnel-Pfad-Modell, das den ET durch diese Proteine über einen einstufigen Superaustauschmechanismus erklärt. [3] Nach diesem Mechanismus kann eine Gruppe von ET-Pfaden, bestehend aus s-Bindungen, Wasserstoffbrücken und "Durch-den-Raum"-Kontakten, zum ET beitragen. [4] Stubbe und Nocera hingegen erklären den weitreichenden ET durch das Enzym Ribonucleotid-Reduktase mit einem mehrstufigen Hopping-Mechanismus, in dessen Verlauf die Elektronen zwischen aromatischen Aminosäureseitenketten "hüpfen". [5, 6] Diese Aminosäuren, auf denen die Ladung für kurze Zeit verweilt, agieren als Zwischenstationen (Relais) für den weitreichenden ET vom Elektronendonor zum Akzeptor. [7] In Folgereaktionen dieser Art [8] sollten die oxidierten Formen von Donor, Akzeptor und Relais während des ET-Prozesses gleichzeitig vorliegen. Wir haben ein Peptidmodell entwickelt, mit dem der gleichzeitige spektroskopische Nachweis aller oxidierten Zwischenstufen (oxidierte Aminosäureseitenketten) zum ersten Mal möglich war. Um den Einfluss aromatischer Aminosäuren auf den weitreichenden Elektronentransfer (ET) in Peptiden zu untersuchen, haben wir die Peptidmodelle 1 ad synthetisiert, [9] in denen drei Aminosäuren voneinander jeweils durch Triprolinsequenzen getrennt sind (Schema 1). In die aromatische Seitenkette der C-terminalen Aminosäure ließ sich selektiv eine positive Ladung injizieren (1!2), um einen Elektronenakzeptor zu erzeugen. Am etwa 20 entfernten N-Terminus [10] stand Tyrosin als Elektronendonor zur Verfügung. Mittig zwischen Donor und Akzeptor platzierten wir eine Aminosäure mit aliphatischer oder aromatischer Seitenkette X (Schema 1). Die Funktionsweise des Injektionssystems an der C-terminalen Aminosäure der Peptide 1 ad ist in Schema 2 dargestellt. Photolyse des Ketons führt dabei zu Radikal 4, das in einer heterolytischen b-Fragmentierung (4!5) zum Radikalkation 5 zerfällt, [11] welches anschließend selektiv den angrenzenden aromatischen Ring oxidiert (5!2). Das Transienten-Absorptionsspektrum des Elektronenakzeptors in 2 weist ein Maximum bei 450 nm auf (Abbildung 1). Schema 1. Injektion einer positiven Ladung in die C-terminale Aminosäure eines Oligopeptids und anschließender ET vom N-terminalen Tyrosin.
Angewandte Chemie International Edition, 2008
Angewandte Chemie International Edition, 2008
Angewandte Chemie-international Edition - ANGEW CHEM INT ED, 2005
Skip to Main Content. Online Library is experiencing intermittent brief disruptions when loading ... more Skip to Main Content. Online Library is experiencing intermittent brief disruptions when loading some pages - this is currently under investigation. ...
... I thank Prof. Dr. Martin Jungen for agreeing to act as chairman of the thesis committee. A sp... more ... I thank Prof. Dr. Martin Jungen for agreeing to act as chairman of the thesis committee. A special thanks for the members of the Wirz group: Anna Paola Pellicioli, Martin Gaplovsky, Markus Ramseier, Bruno Hellrung, Gaby Persy, ...
Journal of Photochemistry and Photobiology A: Chemistry, 2008
Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofura... more Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofuran. In MeOH some traces of solvent addition to the benzoyl radical formed by α-cleavage were detected. In trifluoroethanol several products are due to direct α-cleavage. Only 3% of 2-phenylbenzofuran and 13% of the α-ketocation solvent adduct are formed. The triplet state of 1 observed in nanosecond experiment at low temperature has been confirmed in femtosecond experiment. The triplet is formed quite fast at 370nm (rise time 4.5ps in acetonitrile and 22ps in trifluoroethanol) and is stable up to 1.9ns (a lifetime of 20ns has been determined by quenching experiments with naphthalene).
Journal of Photochemistry and Photobiology a Chemistry, Sep 1, 2008
Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofura... more Photolysis of 2-fluoro-1,2-diphenylethanone (1) in MeCN or MeOH produces mainly 2-phenylbenzofuran. In MeOH some traces of solvent addition to the benzoyl radical formed by α-cleavage were detected. In trifluoroethanol several products are due to direct α-cleavage. Only 3% of 2-phenylbenzofuran and 13% of the α-ketocation solvent adduct are formed. The triplet state of 1 observed in nanosecond experiment at low temperature has been confirmed in femtosecond experiment. The triplet is formed quite fast at 370nm (rise time 4.5ps in acetonitrile and 22ps in trifluoroethanol) and is stable up to 1.9ns (a lifetime of 20ns has been determined by quenching experiments with naphthalene).
The Journal of Physical Chemistry a, May 1, 2007
3',5&... more 3',5'-dimethoxybenzoin (DMB) is an important photoremovable protecting group. The primary photoreactions of DMB acetate and fluoride following photoexcitation by a subpicosecond laser flash were investigated by pump-probe spectroscopy. The primary photoproduct is identified as a preoxetane biradical intermediate that decays by different pathways depending on solvent polarity. In polar solvents (acetonitrile, water), the biradical decays by releasing acetate or fluoride with a lifetime of about 2 ns. Thus, DMB is an excellent protecting group for the investigation of fast processes such as protein folding.
Angewandte Chemie International Edition, 2005
Skip to Main Content. Online Library is experiencing intermittent brief disruptions when loading ... more Skip to Main Content. Online Library is experiencing intermittent brief disruptions when loading some pages - this is currently under investigation. ...