Heesung Park - Academia.edu (original) (raw)
Related Authors
Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram
Uploads
Papers by Heesung Park
Journal of Engineering Materials and Technology , 2021
In this work, the impact behavior of an alumina spherical particle on alumina coating is modeled ... more In this work, the impact behavior of an alumina spherical particle on alumina coating is modeled using the smoothed particle hydrodynamics (SPH) method. The effects of impact angle (0°, 30°, and 60°) and velocity (100 m/s, 200 m/s, and 300 m/s) on the morphology changes of the impact pit and impacting particle, and their associated stress and energy are investigated. The results show that the combination of impact angle of 0° and velocity of 300 m/s produces the highest penetration depth and largest stress and deformation in the coating layer, while the combination of 100 m/s & 60° causes the minimum damage to the coating layer. This is because the penetration depth is determined by the vertical velocity component difference between the impacting particle and the coating layer, but irrelevant to the horizontal component. The total energy of the coating layer increases with the time, while the internal energy increases with the time after some peak values, which is due to energy transmission from the spherical particle to the coating layer and the stress shock waves. The energy transmission from impacting particle to coating layer increases with the increasing particle velocity, and decreases with the increasing inclined angle. The simulated impact pit morphology is qualitatively similar to the experimental observation. This work demonstrates that the SPH method is useful to analyze the impact behavior of ceramic coatings.
Journal of Engineering Materials and Technology , 2021
In this work, the impact behavior of an alumina spherical particle on alumina coating is modeled ... more In this work, the impact behavior of an alumina spherical particle on alumina coating is modeled using the smoothed particle hydrodynamics (SPH) method. The effects of impact angle (0°, 30°, and 60°) and velocity (100 m/s, 200 m/s, and 300 m/s) on the morphology changes of the impact pit and impacting particle, and their associated stress and energy are investigated. The results show that the combination of impact angle of 0° and velocity of 300 m/s produces the highest penetration depth and largest stress and deformation in the coating layer, while the combination of 100 m/s & 60° causes the minimum damage to the coating layer. This is because the penetration depth is determined by the vertical velocity component difference between the impacting particle and the coating layer, but irrelevant to the horizontal component. The total energy of the coating layer increases with the time, while the internal energy increases with the time after some peak values, which is due to energy transmission from the spherical particle to the coating layer and the stress shock waves. The energy transmission from impacting particle to coating layer increases with the increasing particle velocity, and decreases with the increasing inclined angle. The simulated impact pit morphology is qualitatively similar to the experimental observation. This work demonstrates that the SPH method is useful to analyze the impact behavior of ceramic coatings.