Audrey Hendricks - Academia.edu (original) (raw)

Papers by Audrey Hendricks

Research paper thumbnail of Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset

Human Molecular Genetics, May 23, 2009

The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG... more The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.

Research paper thumbnail of The UK10K project identifies rare variants in health and disease

Research paper thumbnail of Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

Nature communications, 2015

Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost... more Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a nove...

Research paper thumbnail of TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

Nature Communications, 2015

The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms... more The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.

Research paper thumbnail of Whole-genome sequence-based analysis of thyroid function

Nature communications, 2015

Normal thyroid function is essential for health, but its genetic architecture remains poorly unde... more Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10(-9)) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10(-9)) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10(-11)). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants…

Research paper thumbnail of Postmortem Interval Influences a-Synuclein Expression in Parkinson Disease Brain

Duplications and triplications of the α-synuclein (SNCA) gene increase risk for PD, suggesting in... more Duplications and triplications of the α-synuclein (SNCA) gene increase risk for PD, suggesting increased expression levels of the gene to be associated with increased PD risk. However, past SNCA expression studies in brain tissue report inconsistent results. We examined expression of the full-length SNCA transcript (140 amino acid protein isoform), as well as total SNCA mRNA levels in 165 frontal cortex samples (101 PD, 64 control) using quantitative real-time polymerase chain reaction. Additionally, we evaluated the relationship of eight SNPs in both 5 and 3 regions of SNCA with the gene expression levels. The association between postmortem interval (PMI) and SNCA expression was different for PD and control samples: SNCA expression decreased with increasing PMI in cases, while staying relatively constant in controls. For short PMI, SNCA expression was increased in PD relative to control samples, whereas for long PMI, SNCA expression in PD was decreased relative to control samples.

Research paper thumbnail of Genomewide linkage study of modifiers of LRRK2-related Parkinson's disease

Research paper thumbnail of A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans

Nature communications, 2014

The analysis of rich catalogues of genetic variation from population-based sequencing provides an... more The analysis of rich catalogues of genetic variation from population-based sequencing provides an opportunity to screen for functional effects. Here we report a rare variant in APOC3 (rs138326449-A, minor allele frequency ~0.25% (UK)) associated with plasma triglyceride (TG) levels (-1.43 s.d. (s.e.=0.27 per minor allele (P-value=8.0 × 10(-8))) discovered in 3,202 individuals with low read-depth, whole-genome sequence. We replicate this in 12,831 participants from five additional samples of Northern and Southern European origin (-1.0 s.d. (s.e.=0.173), P-value=7.32 × 10(-9)). This is consistent with an effect between 0.5 and 1.5 mmol l(-1) dependent on population. We show that a single predicted splice donor variant is responsible for association signals and is independent of known common variants. Analyses suggest an independent relationship between rs138326449 and high-density lipoprotein (HDL) levels. This represents one of the first examples of a rare, large effect variant ident...

Research paper thumbnail of Haplotypes and gene expression implicate the MAPT region for Parkinson disease: The GenePD Study

Neurology, 2008

Background-Microtubule-associated protein tau (MAPT) has been associated with several neurodegene... more Background-Microtubule-associated protein tau (MAPT) has been associated with several neurodegenerative disorders including forms of parkinsonism and Parkinson disease (PD). We evaluated the association of the MAPT region with PD in a large cohort of familial PD cases recruited by the GenePD Study. In addition, postmortem brain samples from patients with PD and neurologically normal controls were used to evaluate whether the expression of the 3-repeat and 4repeat isoforms of MAPT, and neighboring genes Saitohin (STH) and KIAA1267, are altered in PD cerebellum.

Research paper thumbnail of Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes

Neurobiology of Disease, 2009

Modifying the length of the Huntington's disease (HD) CAG repeat, the major determinant of age of... more Modifying the length of the Huntington's disease (HD) CAG repeat, the major determinant of age of disease onset, is an attractive therapeutic approach. To explore this we are investigating mechanisms of intergenerational and somatic HD CAG repeat instability. Here, we have crossed HD CAG knockin mice onto backgrounds deficient in mismatch repair genes, Msh3 and Msh6, to discern the effects on CAG repeat size and disease pathogenesis. We find that different mechanisms predominate in inherited and somatic instability, with Msh6 protecting against intergenerational contractions and Msh3 required both for increasing CAG length and for enhancing an early disease phenotype in striatum. Therefore, attempts to decrease inherited repeat size may entail a full understanding of Msh6 complexes, while attempts to block the age-dependent increases in CAG size in striatal neurons and to slow the disease process will require a full elucidation of Msh3 complexes and their function in CAG repeat instability.

Research paper thumbnail of Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset

Human Molecular Genetics, 2009

The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG... more The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.

Research paper thumbnail of Replication of association between ELAVL4 and Parkinson disease: the GenePD study

Human Genetics, 2008

Genetic variants in embryonic lethal, abnormal vision, Drosophila-like 4 (ELAVL4) have been repor... more Genetic variants in embryonic lethal, abnormal vision, Drosophila-like 4 (ELAVL4) have been reported to be associated with onset age of Parkinson disease (PD) or risk for PD affection in Caucasian populations. In the current study we genotyped three single nucleotide polymorphisms in ELAVL4 in a Caucasian study sample consisting of 712 PD patients and 312 unrelated controls from the GenePD study. The minor allele of rs967582 was associated with increased risk of PD (odds ratio = 1.46, nominal P value = 0.011) in the GenePD population. The minor allele of rs967582 was also the risk allele for PD affection or earlier onset age in the previously studied populations. This

Research paper thumbnail of Correction for multiple testing in a gene region

European Journal of Human Genetics, 2014

Several methods to correct for multiple testing within a gene region have been proposed. These me... more Several methods to correct for multiple testing within a gene region have been proposed. These methods are useful for candidate gene studies, and to fine map gene-regions from GWAs. The Bonferroni correction and permutation are common adjustments, but are overly conservative and computationally intensive, respectively. Other options include calculating the effective number of independent single-nucleotide polymorphisms (SNPs) or using theoretical approximations. Here, we compare a theoretical approximation based on extreme tail theory with four methods for calculating the effective number of independent SNPs. We evaluate the type-I error rates of these methods using single SNP association tests over 10 gene regions simulated using 1000 Genomes data. Overall, we find that the effective number of independent SNP method by Gao et al, as well as extreme tail theory produce type-I error rates at the or close to the chosen significance level. The type-I error rates for the other effective number of independent SNP methods vary by gene region characteristics. We find Gao et al and extreme tail theory to be efficient alternatives to more computationally intensive approaches to control for multiple testing in gene regions.

Research paper thumbnail of The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson's disease: the GenePD study

BMC Medicine, 2008

We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Par... more We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Parkinson's disease (PD) in a large sample of familial PD. The most frequently seen LRRK2 mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of LRRK2 mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD.

Research paper thumbnail of Estimating the probability of de novo HD cases from transmissions of expanded penetrant CAG alleles in the Huntington disease gene from male carriers of high normal alleles (27-35 CAG)

American Journal of Medical Genetics Part A, 2009

Huntington disease (HD) is a dominantly transmitted neurodegenerative disorder that arises from e... more Huntington disease (HD) is a dominantly transmitted neurodegenerative disorder that arises from expansion of a CAG trinucleotide repeat on chromosome 4p16.3. CAG repeat allele lengths are defined as fully penetrant at ≥ 40, reduced penetrance at 36-39, high normal at 27-35, and normal at ≤ 26. Fathers, but not mothers, with high normal alleles are at risk of transmitting potentially penetrant HD alleles (≥ 36) to offspring. We estimated the conditional probability of an offspring inheriting an expanded penetrant allele given a father with a high normal allele by applying probability definitions and rules to estimates of HD incidence, paternal birth rate, frequency of de novo HD, and frequency of high normal alleles in the general population. The estimated probability that a male high normal allele carrier will have an offspring with an expanded penetrant allele ranges from 1/6241 to 1/951. These estimates may be useful in genetic counseling for male high normal allele carriers.

Research paper thumbnail of Assessment of cortical and striatal involvement in 523 Huntington disease brains

Objective: To evaluate the relationship of striatal involvement in Huntington disease (HD) to inv... more Objective: To evaluate the relationship of striatal involvement in Huntington disease (HD) to involvement in other brain regions, CAG repeat size, onset age, and other factors.

Research paper thumbnail of TAA repeat variation in the GRIK2 gene does not influence age at onset in Huntington’s disease

Biochemical and Biophysical Research Communications, 2012

Huntington&am... more Huntington's disease is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat whose length is the major determinant of age at onset but remaining variation appears to be due in part to the effect of genetic modifiers. GRIK2, which encodes GluR6, a mediator of excitatory neurotransmission in the brain, has been suggested in several studies to be a modifier gene based upon a 3' untranslated region TAA trinucleotide repeat polymorphism. Prior to investing in detailed studies of the functional impact of this polymorphism, we sought to confirm its effect on age at onset in a much larger dataset than in previous investigations. We genotyped the HD CAG repeat and the GRIK2 TAA repeat in DNA samples from 2,911 Huntington's disease subjects with known age at onset, and tested for a potential modifier effect of GRIK2 using a variety of statistical approaches. Unlike previous reports, we detected no evidence of an influence of the GRIK2 TAA repeat polymorphism on age at motor onset. Similarly, the GRIK2 polymorphism did not show significant modifier effect on psychiatric and cognitive age at onset in HD. Comprehensive analytical methods applied to a much larger sample than in previous studies do not support a role for GRIK2 as a genetic modifier of age at onset of clinical symptoms in…

Research paper thumbnail of Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset

Human Molecular Genetics, May 23, 2009

The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG... more The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.

Research paper thumbnail of The UK10K project identifies rare variants in health and disease

Research paper thumbnail of Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

Nature communications, 2015

Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost... more Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a nove...

Research paper thumbnail of TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

Nature Communications, 2015

The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms... more The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.

Research paper thumbnail of Whole-genome sequence-based analysis of thyroid function

Nature communications, 2015

Normal thyroid function is essential for health, but its genetic architecture remains poorly unde... more Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10(-9)) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10(-9)) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10(-11)). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants…

Research paper thumbnail of Postmortem Interval Influences a-Synuclein Expression in Parkinson Disease Brain

Duplications and triplications of the α-synuclein (SNCA) gene increase risk for PD, suggesting in... more Duplications and triplications of the α-synuclein (SNCA) gene increase risk for PD, suggesting increased expression levels of the gene to be associated with increased PD risk. However, past SNCA expression studies in brain tissue report inconsistent results. We examined expression of the full-length SNCA transcript (140 amino acid protein isoform), as well as total SNCA mRNA levels in 165 frontal cortex samples (101 PD, 64 control) using quantitative real-time polymerase chain reaction. Additionally, we evaluated the relationship of eight SNPs in both 5 and 3 regions of SNCA with the gene expression levels. The association between postmortem interval (PMI) and SNCA expression was different for PD and control samples: SNCA expression decreased with increasing PMI in cases, while staying relatively constant in controls. For short PMI, SNCA expression was increased in PD relative to control samples, whereas for long PMI, SNCA expression in PD was decreased relative to control samples.

Research paper thumbnail of Genomewide linkage study of modifiers of LRRK2-related Parkinson's disease

Research paper thumbnail of A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans

Nature communications, 2014

The analysis of rich catalogues of genetic variation from population-based sequencing provides an... more The analysis of rich catalogues of genetic variation from population-based sequencing provides an opportunity to screen for functional effects. Here we report a rare variant in APOC3 (rs138326449-A, minor allele frequency ~0.25% (UK)) associated with plasma triglyceride (TG) levels (-1.43 s.d. (s.e.=0.27 per minor allele (P-value=8.0 × 10(-8))) discovered in 3,202 individuals with low read-depth, whole-genome sequence. We replicate this in 12,831 participants from five additional samples of Northern and Southern European origin (-1.0 s.d. (s.e.=0.173), P-value=7.32 × 10(-9)). This is consistent with an effect between 0.5 and 1.5 mmol l(-1) dependent on population. We show that a single predicted splice donor variant is responsible for association signals and is independent of known common variants. Analyses suggest an independent relationship between rs138326449 and high-density lipoprotein (HDL) levels. This represents one of the first examples of a rare, large effect variant ident...

Research paper thumbnail of Haplotypes and gene expression implicate the MAPT region for Parkinson disease: The GenePD Study

Neurology, 2008

Background-Microtubule-associated protein tau (MAPT) has been associated with several neurodegene... more Background-Microtubule-associated protein tau (MAPT) has been associated with several neurodegenerative disorders including forms of parkinsonism and Parkinson disease (PD). We evaluated the association of the MAPT region with PD in a large cohort of familial PD cases recruited by the GenePD Study. In addition, postmortem brain samples from patients with PD and neurologically normal controls were used to evaluate whether the expression of the 3-repeat and 4repeat isoforms of MAPT, and neighboring genes Saitohin (STH) and KIAA1267, are altered in PD cerebellum.

Research paper thumbnail of Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes

Neurobiology of Disease, 2009

Modifying the length of the Huntington's disease (HD) CAG repeat, the major determinant of age of... more Modifying the length of the Huntington's disease (HD) CAG repeat, the major determinant of age of disease onset, is an attractive therapeutic approach. To explore this we are investigating mechanisms of intergenerational and somatic HD CAG repeat instability. Here, we have crossed HD CAG knockin mice onto backgrounds deficient in mismatch repair genes, Msh3 and Msh6, to discern the effects on CAG repeat size and disease pathogenesis. We find that different mechanisms predominate in inherited and somatic instability, with Msh6 protecting against intergenerational contractions and Msh3 required both for increasing CAG length and for enhancing an early disease phenotype in striatum. Therefore, attempts to decrease inherited repeat size may entail a full understanding of Msh6 complexes, while attempts to block the age-dependent increases in CAG size in striatal neurons and to slow the disease process will require a full elucidation of Msh3 complexes and their function in CAG repeat instability.

Research paper thumbnail of Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset

Human Molecular Genetics, 2009

The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG... more The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.

Research paper thumbnail of Replication of association between ELAVL4 and Parkinson disease: the GenePD study

Human Genetics, 2008

Genetic variants in embryonic lethal, abnormal vision, Drosophila-like 4 (ELAVL4) have been repor... more Genetic variants in embryonic lethal, abnormal vision, Drosophila-like 4 (ELAVL4) have been reported to be associated with onset age of Parkinson disease (PD) or risk for PD affection in Caucasian populations. In the current study we genotyped three single nucleotide polymorphisms in ELAVL4 in a Caucasian study sample consisting of 712 PD patients and 312 unrelated controls from the GenePD study. The minor allele of rs967582 was associated with increased risk of PD (odds ratio = 1.46, nominal P value = 0.011) in the GenePD population. The minor allele of rs967582 was also the risk allele for PD affection or earlier onset age in the previously studied populations. This

Research paper thumbnail of Correction for multiple testing in a gene region

European Journal of Human Genetics, 2014

Several methods to correct for multiple testing within a gene region have been proposed. These me... more Several methods to correct for multiple testing within a gene region have been proposed. These methods are useful for candidate gene studies, and to fine map gene-regions from GWAs. The Bonferroni correction and permutation are common adjustments, but are overly conservative and computationally intensive, respectively. Other options include calculating the effective number of independent single-nucleotide polymorphisms (SNPs) or using theoretical approximations. Here, we compare a theoretical approximation based on extreme tail theory with four methods for calculating the effective number of independent SNPs. We evaluate the type-I error rates of these methods using single SNP association tests over 10 gene regions simulated using 1000 Genomes data. Overall, we find that the effective number of independent SNP method by Gao et al, as well as extreme tail theory produce type-I error rates at the or close to the chosen significance level. The type-I error rates for the other effective number of independent SNP methods vary by gene region characteristics. We find Gao et al and extreme tail theory to be efficient alternatives to more computationally intensive approaches to control for multiple testing in gene regions.

Research paper thumbnail of The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson's disease: the GenePD study

BMC Medicine, 2008

We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Par... more We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Parkinson's disease (PD) in a large sample of familial PD. The most frequently seen LRRK2 mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of LRRK2 mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD.

Research paper thumbnail of Estimating the probability of de novo HD cases from transmissions of expanded penetrant CAG alleles in the Huntington disease gene from male carriers of high normal alleles (27-35 CAG)

American Journal of Medical Genetics Part A, 2009

Huntington disease (HD) is a dominantly transmitted neurodegenerative disorder that arises from e... more Huntington disease (HD) is a dominantly transmitted neurodegenerative disorder that arises from expansion of a CAG trinucleotide repeat on chromosome 4p16.3. CAG repeat allele lengths are defined as fully penetrant at ≥ 40, reduced penetrance at 36-39, high normal at 27-35, and normal at ≤ 26. Fathers, but not mothers, with high normal alleles are at risk of transmitting potentially penetrant HD alleles (≥ 36) to offspring. We estimated the conditional probability of an offspring inheriting an expanded penetrant allele given a father with a high normal allele by applying probability definitions and rules to estimates of HD incidence, paternal birth rate, frequency of de novo HD, and frequency of high normal alleles in the general population. The estimated probability that a male high normal allele carrier will have an offspring with an expanded penetrant allele ranges from 1/6241 to 1/951. These estimates may be useful in genetic counseling for male high normal allele carriers.

Research paper thumbnail of Assessment of cortical and striatal involvement in 523 Huntington disease brains

Objective: To evaluate the relationship of striatal involvement in Huntington disease (HD) to inv... more Objective: To evaluate the relationship of striatal involvement in Huntington disease (HD) to involvement in other brain regions, CAG repeat size, onset age, and other factors.

Research paper thumbnail of TAA repeat variation in the GRIK2 gene does not influence age at onset in Huntington’s disease

Biochemical and Biophysical Research Communications, 2012

Huntington&am... more Huntington's disease is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat whose length is the major determinant of age at onset but remaining variation appears to be due in part to the effect of genetic modifiers. GRIK2, which encodes GluR6, a mediator of excitatory neurotransmission in the brain, has been suggested in several studies to be a modifier gene based upon a 3' untranslated region TAA trinucleotide repeat polymorphism. Prior to investing in detailed studies of the functional impact of this polymorphism, we sought to confirm its effect on age at onset in a much larger dataset than in previous investigations. We genotyped the HD CAG repeat and the GRIK2 TAA repeat in DNA samples from 2,911 Huntington's disease subjects with known age at onset, and tested for a potential modifier effect of GRIK2 using a variety of statistical approaches. Unlike previous reports, we detected no evidence of an influence of the GRIK2 TAA repeat polymorphism on age at motor onset. Similarly, the GRIK2 polymorphism did not show significant modifier effect on psychiatric and cognitive age at onset in HD. Comprehensive analytical methods applied to a much larger sample than in previous studies do not support a role for GRIK2 as a genetic modifier of age at onset of clinical symptoms in…