Lars Hildebrandt - Academia.edu (original) (raw)
Related Authors
BAM Federal Institute for Materials Research and Testing
Uploads
Papers by Lars Hildebrandt
PLOS ONE, 2020
The presence of microplastic (MP) particles in aquatic environments raised concern about possible... more The presence of microplastic (MP) particles in aquatic environments raised concern about possible enrichment of organic and inorganic pollutants due to their specific surface and chemical properties. In particular the role of metals within this context is still poorly understood. Therefore, the aim of this work was to develop a fully validated acid digestion protocol for metal analysis in different polymers, which is a prerequisite to study such interactions. The proposed digestion protocol was validated using six different certified reference materials in the microplastic size range consisting of polyethylene, polypropylene, acrylonitrile butadiene styrene and polyvinyl chloride. As ICP-MS/MS enabled time-efficient, sensitive and robust analysis of 56 metals in one measurement, the method was suitable to provide mass fractions for a multitude of other elements beside the certified ones (As, Cd, Cr, Hg, Pb, Sb, Sn and Zn). Three different microwaves, different acid mixtures as well as different temperatures in combination with different hold times were tested for optimization purposes. With the exception of Cr in acrylonitrile butadiene styrene, recovery rates obtained using the optimized protocol for all six certified reference materials fell within a range from 95.9% ± 2.7% to 112% ± 7%. Subsequent optimization further enhanced both precision and recoveries ranging from 103% ± 5% to 107 ± 4% (U; k = 2 (n = 3)) for all certified metals (incl. Cr) in acrylonitrile butadiene styrene. The results clearly show the analytical challenges that come along with metal analysis in chemically resistant plastics. Addressing specific analysis tools for different sorption scenarios and processes as well as the underlying kinetics was beyond this study's scope. However, the future application of the two recommended thoroughly validated total acid digestion protocols as a first step in the direction of harmonization of metal analysis in/on MP will enhance the significance and comparability of the generated data. It will contribute to a better understanding of the role of MP as vector for trace metals in the environment.
Frontiers in Environmental Science, 2020
PLOS ONE, 2020
The presence of microplastic (MP) particles in aquatic environments raised concern about possible... more The presence of microplastic (MP) particles in aquatic environments raised concern about possible enrichment of organic and inorganic pollutants due to their specific surface and chemical properties. In particular the role of metals within this context is still poorly understood. Therefore, the aim of this work was to develop a fully validated acid digestion protocol for metal analysis in different polymers, which is a prerequisite to study such interactions. The proposed digestion protocol was validated using six different certified reference materials in the microplastic size range consisting of polyethylene, polypropylene, acrylonitrile butadiene styrene and polyvinyl chloride. As ICP-MS/MS enabled time-efficient, sensitive and robust analysis of 56 metals in one measurement, the method was suitable to provide mass fractions for a multitude of other elements beside the certified ones (As, Cd, Cr, Hg, Pb, Sb, Sn and Zn). Three different microwaves, different acid mixtures as well as different temperatures in combination with different hold times were tested for optimization purposes. With the exception of Cr in acrylonitrile butadiene styrene, recovery rates obtained using the optimized protocol for all six certified reference materials fell within a range from 95.9% ± 2.7% to 112% ± 7%. Subsequent optimization further enhanced both precision and recoveries ranging from 103% ± 5% to 107 ± 4% (U; k = 2 (n = 3)) for all certified metals (incl. Cr) in acrylonitrile butadiene styrene. The results clearly show the analytical challenges that come along with metal analysis in chemically resistant plastics. Addressing specific analysis tools for different sorption scenarios and processes as well as the underlying kinetics was beyond this study's scope. However, the future application of the two recommended thoroughly validated total acid digestion protocols as a first step in the direction of harmonization of metal analysis in/on MP will enhance the significance and comparability of the generated data. It will contribute to a better understanding of the role of MP as vector for trace metals in the environment.
Frontiers in Environmental Science, 2020