Houra Merrikh - Academia.edu (original) (raw)

Papers by Houra Merrikh

Research paper thumbnail of Replication–transcription conflicts in bacteria

Nature Reviews Microbiology, 2012

• DNA replication and transcription share the same DNA template. Encounters between the replicati... more • DNA replication and transcription share the same DNA template. Encounters between the replication and transcription machineries can lead to conflicts that result in disruption of replication, genome instability and reduced fitness.

Research paper thumbnail of Co-directional replication–transcription conflicts lead to replication restart

Nature, 2011

Head-on encounters between the replication and transcription machineries on the lagging DNA stran... more Head-on encounters between the replication and transcription machineries on the lagging DNA strand can lead to replication fork arrest and genomic instability 1 , 2 . To avoid head-on encounters, most genes, especially essential and highly transcribed genes, are encoded on the leading strand such that transcription and replication are co-directional. Virtually all bacteria have the highly expressed rRNA genes co-directional with replication 3 . In bacteria, co-directional encounters seem inevitable because the rate of replication is about 10-20-fold greater than the rate of transcription. However, these encounters are generally thought to be benign 2 , 4 -9 . Biochemical analyses indicate that head-on encounters 10 are more deleterious than co-directional encounters 8 , and that in both situations, replication resumes without the need for any auxiliary restart proteins, at least in vitro. Here we show that in vivo, co-directional transcription can disrupt replication leading to the involvement of replication restart proteins. We found that highly transcribed rRNA genes are hotspots for co-directional conflicts between replication and transcription in rapidly growing Bacillus subtilis cells. We observed a transcription-dependent increase in association of the replicative helicase and replication restart proteins where head-on and co-directional conflicts occur. Our results indicate that there are co-directional conflicts between replication and transcription in vivo. Furthermore, in contrast to the findings in vitro, the replication restart machinery is involved in vivo in resolving potentially deleterious encounters due to head-on and co-directional conflicts. These conflicts likely occur in many organisms and at many chromosomal locations and help to explain the presence of important auxiliary proteins involved in replication restart and in helping to clear a path along the DNA for the replisome.

Research paper thumbnail of Accelerated gene evolution through replication–transcription conflicts

Nature, 2013

Several mechanisms that increase the rate of mutagenesis across the entire genome have been ident... more Several mechanisms that increase the rate of mutagenesis across the entire genome have been identified; however, how the rate of evolution might be promoted in individual genes is unclear. Most genes in bacteria are encoded on the leading strand of replication 1-4 . This presumably avoids the potentially detrimental head-on collisions that occur between the replication and transcription machineries when genes are encoded on the lagging strand 1-4 . Here we identify the ubiquitous (core) genes in Bacillus subtilis and determine that 17% of them are on the lagging strand. We find a higher rate of point mutations in the core genes on the lagging strand compared with those on the leading strand, with this difference being primarily in the amino-acid-changing (nonsynonymous) mutations. We determine that, overall, the genes under strong negative selection against amino-acid-changing mutations tend to be on the leading strand, co-oriented with replication. In contrast, on the basis of the rate of convergent mutations, genes under positive selection for amino-acid-changing mutations are more commonly found on the lagging strand, indicating faster adaptive evolution in many genes in the head-on orientation. Increased gene length and gene expression amounts are positively correlated with the rate of accumulation of nonsynonymous mutations in the head-on genes, suggesting that the conflict between replication and transcription could be a driving force behind these mutations. Indeed, using reversion assays, we show that the difference in the rate of mutagenesis of genes in the two orientations is transcription dependent. Altogether, our findings indicate that head-on replication-transcription conflicts are more mutagenic than co-directional conflicts and that these encounters can significantly increase adaptive structural variation in the coded proteins. We propose that bacteria, and potentially other organisms, promote faster evolution of specific genes through orientation-dependent encounters between DNA replication and transcription.

Research paper thumbnail of YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress

Molecular Microbiology, 2009

YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcription... more YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress. Molecular Microbiology, 74: 454-466.

Research paper thumbnail of Control of the replication initiator DnaA by an anti-cooperativity factor

Molecular Microbiology, 2011

Proper coordination of DNA replication with cell growth and division is critical for production o... more Proper coordination of DNA replication with cell growth and division is critical for production of viable progeny. In bacteria, coordination of DNA replication with cell growth is generally achieved by controlling activity of the replication initiator DnaA and its access to the chromosomal origin of replication, oriC. Here we describe a previously unknown mechanism for regulation of DnaA. YabA, a negative regulator of replication initiation in Bacillus subtilis, interacts with DnaA and DnaN, the sliding (processivity) clamp of DNA polymerase. We found that in vivo, YabA associated with the oriC region in a DnaA-dependent manner and limited the amount of DnaA at oriC. In vitro, purified YabA altered binding of DnaA to DNA by inhibiting cooperativity. Though previously undescribed, proteins that directly inhibit cooperativity may be a common mechanism for regulating replication initiation. Conditions that cause release of DnaN from the replisome, or overproduction of DnaN, caused decreased association of YabA and increased association of DnaA with oriC. This effect of DnaN, either directly or indirectly, is likely responsible, in part, for enabling initiation of a new round of replication following completion of a previous round.

Research paper thumbnail of Growth Phase and (p)ppGpp Control of IraD, a Regulator of RpoS Stability, in Escherichia coli

Journal of Bacteriology - J BACTERIOL, 2009

The antiadaptor protein IraD inhibits the proteolysis of the alternative sigma factor, RpoS, whic... more The antiadaptor protein IraD inhibits the proteolysis of the alternative sigma factor, RpoS, which promotes the synthesis of >100 genes during the general stress response and during stationary phase. Our previous results showed that IraD determines RpoS steady-state levels during exponential growth and mediates its stabilization after DNA damage. In this study, we show by promoter fusions that iraD was upregulated during the transition from exponential growth to stationary phase. The levels of RpoS likewise rose during this transition in a partially IraD-dependent manner. The expression of iraD was under the control of ppGpp. The expression of iraD required RelA and SpoT (p)ppGpp synthetase activities and was dramatically induced by a "stringent" allele of RNA polymerase, culminating in elevated levels of RpoS. Surprisingly, DksA, normally required for transcriptional effects of the stringent response, repressed iraD expression, suggesting that DksA can exert regulatory effects independent of and opposing those of (p)ppGpp. Northern blot analysis and 5 rapid amplification of cDNA ends revealed two transcripts for iraD in wild-type strains; the smaller was regulated positively by RelA during growth; the larger transcript was induced specifically upon transition to stationary phase and was RelA SpoT dependent. A reporter fusion to the distal promoter indicated that it accounts for growth-phase regulation and DNA damage inducibility. DNA damage inducibility occurred in strains unable to synthesize (p)ppGpp, indicating an additional mode of regulation. Our results suggest that the induction of RpoS during transition to stationary phase and by (p)ppGpp occurs at least partially through IraD.

Research paper thumbnail of A DNA damage response in Escherichia coli involving the alternative sigma factor, RpoS

Proceedings of the …, 2009

We isolated an Escherichia coli mutant in the iraD gene, sensitive to various forms of DNA damage... more We isolated an Escherichia coli mutant in the iraD gene, sensitive to various forms of DNA damage. Our data are consistent with the function of IraD to promote accumulation of the alternative transcription sigma factor, RpoS, by binding to the adaptor RssB protein that targets RpoS for degradation. Our results demonstrate the physiological importance of this mode of regulation for DNA damage tolerance. Although RpoS is best known for its regulation of genes induced in stationary phase, our work underscores the importance of the RpoS regulon in a DNA damage response in actively growing cells. We show that iraD transcription is induced by DNA damage by a mechanism independent of the SOS response. The IraD and SOS regulatory pathways appear to act synergistically to ensure survival of cells faced with oxidative or DNA damaging stress during cellular growth.

Research paper thumbnail of The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis

Plants derive a number of important secondary metabolites from the amino acid tryptophan (Trp), i... more Plants derive a number of important secondary metabolites from the amino acid tryptophan (Trp), including the growth regulator indole-3-acetic acid (IAA) and defense compounds against pathogens and herbivores. In previous work, we found that a dominant overexpression allele of the Arabidopsis (Arabidopsis thaliana) Myb transcription factor ATR1, atr1D, activates expression of a Trp synthesis gene as well as the Trp-metabolizing genes CYP79B2, CYP79B3, and CYP83B1, which encode enzymes implicated in production of IAA and indolic glucosinolate (IG) antiherbivore compounds. Here, we show that ATR1 overexpression confers elevated levels of IAA and IGs. In addition, we show that an atr1 loss-of-function mutation impairs expression of IG synthesis genes and confers reduced IG levels. Furthermore, the atr1-defective mutation suppresses Trp gene dysregulation in a cyp83B1 mutant background. Together, this work implicates ATR1 as a key homeostatic regulator of Trp metabolism and suggests that ATR1 can be manipulated to coordinately control the suite of enzymes that synthesize IGs. ; fax 410-955-2926.

Research paper thumbnail of An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis

Proceedings of the National Academy of Sciences, 2015

We previously reported that lagging-strand genes accumulate mutations faster than those encoded o... more We previously reported that lagging-strand genes accumulate mutations faster than those encoded on the leading strand in Bacillus subtilis. Although we proposed that orientation-specific encounters between replication and transcription underlie this phenomenon, the mechanism leading to the increased mutagenesis of lagging-strand genes remained unknown. Here, we report that the transcription-dependent and orientation-specific differences in mutation rates of genes require the B. subtilis Y-family polymerase, PolY1 (yqjH). We find that without PolY1, association of the replicative helicase, DnaC, and the recombination protein, RecA, with lagging-strand genes increases in a transcription-dependent manner. These data suggest that PolY1 promotes efficient replisome progression through lagging-strand genes, thereby reducing potentially detrimental breaks and single-stranded DNA at these loci. Y-family polymerases can alleviate potential obstacles to replisome progression by facilitating DNA lesion bypass, extension of D-loops, or excision repair. We find that the nucleotide excision repair (NER) proteins UvrA, UvrB, and UvrC, but not RecA, are required for transcription-dependent asymmetry in mutation rates of genes in the two orientations. Furthermore, we find that the transcription-coupling repair factor Mfd functions in the same pathway as PolY1 and is also required for increased mutagenesis of lagging-strand genes. Experimental and SNP analyses of B. subtilis genomes show mutational footprints consistent with these findings. We propose that the interplay between replication and transcription increases lesion susceptibility of, specifically, lagging-strand genes, activating an Mfd-dependent error-prone NER mechanism. We propose that this process, at least partially, underlies the accelerated evolution of lagging-strand genes.

Research paper thumbnail of Replication–transcription conflicts in bacteria

Nature Reviews Microbiology, 2012

• DNA replication and transcription share the same DNA template. Encounters between the replicati... more • DNA replication and transcription share the same DNA template. Encounters between the replication and transcription machineries can lead to conflicts that result in disruption of replication, genome instability and reduced fitness.

Research paper thumbnail of Co-directional replication–transcription conflicts lead to replication restart

Nature, 2011

Head-on encounters between the replication and transcription machineries on the lagging DNA stran... more Head-on encounters between the replication and transcription machineries on the lagging DNA strand can lead to replication fork arrest and genomic instability 1 , 2 . To avoid head-on encounters, most genes, especially essential and highly transcribed genes, are encoded on the leading strand such that transcription and replication are co-directional. Virtually all bacteria have the highly expressed rRNA genes co-directional with replication 3 . In bacteria, co-directional encounters seem inevitable because the rate of replication is about 10-20-fold greater than the rate of transcription. However, these encounters are generally thought to be benign 2 , 4 -9 . Biochemical analyses indicate that head-on encounters 10 are more deleterious than co-directional encounters 8 , and that in both situations, replication resumes without the need for any auxiliary restart proteins, at least in vitro. Here we show that in vivo, co-directional transcription can disrupt replication leading to the involvement of replication restart proteins. We found that highly transcribed rRNA genes are hotspots for co-directional conflicts between replication and transcription in rapidly growing Bacillus subtilis cells. We observed a transcription-dependent increase in association of the replicative helicase and replication restart proteins where head-on and co-directional conflicts occur. Our results indicate that there are co-directional conflicts between replication and transcription in vivo. Furthermore, in contrast to the findings in vitro, the replication restart machinery is involved in vivo in resolving potentially deleterious encounters due to head-on and co-directional conflicts. These conflicts likely occur in many organisms and at many chromosomal locations and help to explain the presence of important auxiliary proteins involved in replication restart and in helping to clear a path along the DNA for the replisome.

Research paper thumbnail of Accelerated gene evolution through replication–transcription conflicts

Nature, 2013

Several mechanisms that increase the rate of mutagenesis across the entire genome have been ident... more Several mechanisms that increase the rate of mutagenesis across the entire genome have been identified; however, how the rate of evolution might be promoted in individual genes is unclear. Most genes in bacteria are encoded on the leading strand of replication 1-4 . This presumably avoids the potentially detrimental head-on collisions that occur between the replication and transcription machineries when genes are encoded on the lagging strand 1-4 . Here we identify the ubiquitous (core) genes in Bacillus subtilis and determine that 17% of them are on the lagging strand. We find a higher rate of point mutations in the core genes on the lagging strand compared with those on the leading strand, with this difference being primarily in the amino-acid-changing (nonsynonymous) mutations. We determine that, overall, the genes under strong negative selection against amino-acid-changing mutations tend to be on the leading strand, co-oriented with replication. In contrast, on the basis of the rate of convergent mutations, genes under positive selection for amino-acid-changing mutations are more commonly found on the lagging strand, indicating faster adaptive evolution in many genes in the head-on orientation. Increased gene length and gene expression amounts are positively correlated with the rate of accumulation of nonsynonymous mutations in the head-on genes, suggesting that the conflict between replication and transcription could be a driving force behind these mutations. Indeed, using reversion assays, we show that the difference in the rate of mutagenesis of genes in the two orientations is transcription dependent. Altogether, our findings indicate that head-on replication-transcription conflicts are more mutagenic than co-directional conflicts and that these encounters can significantly increase adaptive structural variation in the coded proteins. We propose that bacteria, and potentially other organisms, promote faster evolution of specific genes through orientation-dependent encounters between DNA replication and transcription.

Research paper thumbnail of YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress

Molecular Microbiology, 2009

YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcription... more YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress. Molecular Microbiology, 74: 454-466.

Research paper thumbnail of Control of the replication initiator DnaA by an anti-cooperativity factor

Molecular Microbiology, 2011

Proper coordination of DNA replication with cell growth and division is critical for production o... more Proper coordination of DNA replication with cell growth and division is critical for production of viable progeny. In bacteria, coordination of DNA replication with cell growth is generally achieved by controlling activity of the replication initiator DnaA and its access to the chromosomal origin of replication, oriC. Here we describe a previously unknown mechanism for regulation of DnaA. YabA, a negative regulator of replication initiation in Bacillus subtilis, interacts with DnaA and DnaN, the sliding (processivity) clamp of DNA polymerase. We found that in vivo, YabA associated with the oriC region in a DnaA-dependent manner and limited the amount of DnaA at oriC. In vitro, purified YabA altered binding of DnaA to DNA by inhibiting cooperativity. Though previously undescribed, proteins that directly inhibit cooperativity may be a common mechanism for regulating replication initiation. Conditions that cause release of DnaN from the replisome, or overproduction of DnaN, caused decreased association of YabA and increased association of DnaA with oriC. This effect of DnaN, either directly or indirectly, is likely responsible, in part, for enabling initiation of a new round of replication following completion of a previous round.

Research paper thumbnail of Growth Phase and (p)ppGpp Control of IraD, a Regulator of RpoS Stability, in Escherichia coli

Journal of Bacteriology - J BACTERIOL, 2009

The antiadaptor protein IraD inhibits the proteolysis of the alternative sigma factor, RpoS, whic... more The antiadaptor protein IraD inhibits the proteolysis of the alternative sigma factor, RpoS, which promotes the synthesis of >100 genes during the general stress response and during stationary phase. Our previous results showed that IraD determines RpoS steady-state levels during exponential growth and mediates its stabilization after DNA damage. In this study, we show by promoter fusions that iraD was upregulated during the transition from exponential growth to stationary phase. The levels of RpoS likewise rose during this transition in a partially IraD-dependent manner. The expression of iraD was under the control of ppGpp. The expression of iraD required RelA and SpoT (p)ppGpp synthetase activities and was dramatically induced by a "stringent" allele of RNA polymerase, culminating in elevated levels of RpoS. Surprisingly, DksA, normally required for transcriptional effects of the stringent response, repressed iraD expression, suggesting that DksA can exert regulatory effects independent of and opposing those of (p)ppGpp. Northern blot analysis and 5 rapid amplification of cDNA ends revealed two transcripts for iraD in wild-type strains; the smaller was regulated positively by RelA during growth; the larger transcript was induced specifically upon transition to stationary phase and was RelA SpoT dependent. A reporter fusion to the distal promoter indicated that it accounts for growth-phase regulation and DNA damage inducibility. DNA damage inducibility occurred in strains unable to synthesize (p)ppGpp, indicating an additional mode of regulation. Our results suggest that the induction of RpoS during transition to stationary phase and by (p)ppGpp occurs at least partially through IraD.

Research paper thumbnail of A DNA damage response in Escherichia coli involving the alternative sigma factor, RpoS

Proceedings of the …, 2009

We isolated an Escherichia coli mutant in the iraD gene, sensitive to various forms of DNA damage... more We isolated an Escherichia coli mutant in the iraD gene, sensitive to various forms of DNA damage. Our data are consistent with the function of IraD to promote accumulation of the alternative transcription sigma factor, RpoS, by binding to the adaptor RssB protein that targets RpoS for degradation. Our results demonstrate the physiological importance of this mode of regulation for DNA damage tolerance. Although RpoS is best known for its regulation of genes induced in stationary phase, our work underscores the importance of the RpoS regulon in a DNA damage response in actively growing cells. We show that iraD transcription is induced by DNA damage by a mechanism independent of the SOS response. The IraD and SOS regulatory pathways appear to act synergistically to ensure survival of cells faced with oxidative or DNA damaging stress during cellular growth.

Research paper thumbnail of The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis

Plants derive a number of important secondary metabolites from the amino acid tryptophan (Trp), i... more Plants derive a number of important secondary metabolites from the amino acid tryptophan (Trp), including the growth regulator indole-3-acetic acid (IAA) and defense compounds against pathogens and herbivores. In previous work, we found that a dominant overexpression allele of the Arabidopsis (Arabidopsis thaliana) Myb transcription factor ATR1, atr1D, activates expression of a Trp synthesis gene as well as the Trp-metabolizing genes CYP79B2, CYP79B3, and CYP83B1, which encode enzymes implicated in production of IAA and indolic glucosinolate (IG) antiherbivore compounds. Here, we show that ATR1 overexpression confers elevated levels of IAA and IGs. In addition, we show that an atr1 loss-of-function mutation impairs expression of IG synthesis genes and confers reduced IG levels. Furthermore, the atr1-defective mutation suppresses Trp gene dysregulation in a cyp83B1 mutant background. Together, this work implicates ATR1 as a key homeostatic regulator of Trp metabolism and suggests that ATR1 can be manipulated to coordinately control the suite of enzymes that synthesize IGs. ; fax 410-955-2926.

Research paper thumbnail of An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis

Proceedings of the National Academy of Sciences, 2015

We previously reported that lagging-strand genes accumulate mutations faster than those encoded o... more We previously reported that lagging-strand genes accumulate mutations faster than those encoded on the leading strand in Bacillus subtilis. Although we proposed that orientation-specific encounters between replication and transcription underlie this phenomenon, the mechanism leading to the increased mutagenesis of lagging-strand genes remained unknown. Here, we report that the transcription-dependent and orientation-specific differences in mutation rates of genes require the B. subtilis Y-family polymerase, PolY1 (yqjH). We find that without PolY1, association of the replicative helicase, DnaC, and the recombination protein, RecA, with lagging-strand genes increases in a transcription-dependent manner. These data suggest that PolY1 promotes efficient replisome progression through lagging-strand genes, thereby reducing potentially detrimental breaks and single-stranded DNA at these loci. Y-family polymerases can alleviate potential obstacles to replisome progression by facilitating DNA lesion bypass, extension of D-loops, or excision repair. We find that the nucleotide excision repair (NER) proteins UvrA, UvrB, and UvrC, but not RecA, are required for transcription-dependent asymmetry in mutation rates of genes in the two orientations. Furthermore, we find that the transcription-coupling repair factor Mfd functions in the same pathway as PolY1 and is also required for increased mutagenesis of lagging-strand genes. Experimental and SNP analyses of B. subtilis genomes show mutational footprints consistent with these findings. We propose that the interplay between replication and transcription increases lesion susceptibility of, specifically, lagging-strand genes, activating an Mfd-dependent error-prone NER mechanism. We propose that this process, at least partially, underlies the accelerated evolution of lagging-strand genes.