Huw Thomas - Academia.edu (original) (raw)

Papers by Huw Thomas

Research paper thumbnail of Supplementary Methods from DNA-PK—A Candidate Driver of Hepatocarcinogenesis and Tissue Biomarker That Predicts Response to Treatment and Survival

Purpose: Therapy resistance and associated liver disease make hepatocellular carcinomas (HCC) dif... more Purpose: Therapy resistance and associated liver disease make hepatocellular carcinomas (HCC) difficult to treat with traditional cytotoxic therapies, whereas newer targeted approaches offer only modest survival benefit. We focused on DNA-dependent protein kinase, DNA-PKcs, encoded by PRKDC and central to DNA damage repair by nonhomologous end joining. Our aim was to explore its roles in hepatocarcinogenesis and as a novel therapeutic candidate. Experimental Design: PRKDC was characterized in liver tissues from of 132 patients [normal liver (n ¼ 10), cirrhotic liver (n ¼ 13), dysplastic nodules (n ¼ 18), HCC (n ¼ 91)] using Affymetrix U133 Plus 2.0 and 500 K Human Mapping SNP arrays (cohort 1). In addition, we studied a case series of 45 patients with HCC undergoing diagnostic biopsy (cohort 2). Histological grading, response to treatment, and survival were correlated with DNA-PKcs quantified immunohistochemically. Parallel in vitro studies determined the impact of DNA-PK on DNA repair and response to cytotoxic therapy. Results: Increased PRKDC expression in HCC was associated with amplification of its genetic locus in cohort 1. In cohort 2, elevated DNA-PKcs identified patients with treatment-resistant HCC, progressing at a median of 4.5 months compared with 16.9 months, whereas elevation of activated pDNA-PK independently predicted poorer survival. DNA-PKcs was high in HCC cell lines, where its inhibition with NU7441 potentiated irradiation and doxorubicin-induced cytotoxicity, whereas the combination suppressed HCC growth in vitro and in vivo. Conclusions: These data identify PRKDC/DNA-PKcs as a candidate driver of hepatocarcinogenesis, whose biopsy characterization at diagnosis may impact stratification of current therapies, and whose specific future targeting may overcome resistance. Clin Cancer Res; 21(4); 925-33. Ó2014 AACR.

Research paper thumbnail of Differential utilization of regulatory domains within the alpha 1(I) collagen promoter in osseous and fibroblastic cells

The Journal of cell biology, 1992

Type I collagen is expressed in a variety of connective tissue cells and its transcriptional regu... more Type I collagen is expressed in a variety of connective tissue cells and its transcriptional regulation is highly complex because of the influence of numerous developmental, environmental, and hormonal factors. To investigate the molecular basis for one aspect of this complex regulation, the expression of alpha 1(I) collagen (COL1A1) gene in osseous tissues, we fused a 3.6-kb DNA fragment between bases -3,521 and +115 of the rat COL1A1 promoter, and three deletion mutants, to the chloramphenicol acetyltransferase (CAT) marker gene. The expression of these ColCAT transgenes was measured in stably transfected osteoblastic cell lines ROS 17/2.8, Py-la, and MC3T3-E1 and three fibroblastic lines NIH-3T3, Rat-1, and EL2. Deletion of the distal 1.2-kb fragment of the full-length ColCAT 3.6 construct reduced the promoter activity 7- to 30-fold in the osteoblastic cell lines, twofold in EL2 and had no effect in NIH-3T3 and Rat-1 cells. To begin to assess the function of COL1A1 upstream regul...

Research paper thumbnail of Side Population in Human Non-Muscle Invasive Bladder Cancer Enriches for Cancer Stem Cells That Are Maintained by MAPK Signalling

PLoS ONE, 2012

Side population (SP) and ABC transporter expression enrich for stem cells in numerous tissues. We... more Side population (SP) and ABC transporter expression enrich for stem cells in numerous tissues. We explored if this phenotype characterised human bladder cancer stem cells (CSCs) and attempted to identify regulatory mechanisms. Focusing on non-muscle invasive bladder cancer (NMIBC), multiple human cell lines were used to characterise SP and ABC transporter expression. In vitro and in vivo phenotypic and functional assessments of CSC behaviour were undertaken. Expression of putative CSC marker ABCG2 was assessed in clinical NMIBC samples (n = 148), and a role for MAPK signalling, a central mechanism of bladder tumourigenesis, was investigated. Results showed that the ABCG2 transporter was predominantly expressed and was up-regulated in the SP fraction by 3-fold (ABCG2 hi) relative to the non-SP (NSP) fraction (ABCG2 low). ABCG2 hi SP cells displayed enrichment of stem cell markers (Nanog, Notch1 and SOX2) and a threefold increase in colony forming efficiency (CFE) in comparison to ABCG2 low NSP cells. In vivo, ABCG2 hi SP cells enriched for tumour growth compared with ABCG2 low NSP cells, consistent with CSCs. pERK was constitutively active in ABCG2 hi SP cells and MEK inhibition also inhibited the ABCG2 hi SP phenotype and significantly suppressed CFE. Furthermore, on examining clinical NMIBC samples, ABCG2 expression correlated with increased recurrence and decreased progression free survival. Additionally, pERK expression also correlated with decreased progression free survival, whilst a positive correlation was further demonstrated between ABCG2 and pERK expression. In conclusion, we confirm ABCG2 hi SP enriches for CSCs in human NMIBC and MAPK/ERK pathway is a suitable therapeutic target.

Research paper thumbnail of Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase

Nature, 2007

and we want to declare our relationship with these patents. N.J.C. and T.H., and T.H. alone, are ... more and we want to declare our relationship with these patents. N.J.C. and T.H., and T.H. alone, are named inventors on these patents, respectively, but are not owners of the patents nor do they have shares in the companies or institutions to which the patents belong. However, because the value of these patents has increased, owing to further results obtained in other laboratories since publication, N.J.C. and T.H. now wish to declare possible competing financial interests.

Research paper thumbnail of Glucocorticoids and selumetinib are highly synergistic in RAS pathway-mutated childhood acute lymphoblastic leukemia through upregulation of BIM

Haematologica, 2019

New drugs are needed for relapsed acute lymphoblastic leukemia and preclinical evaluation of the ... more New drugs are needed for relapsed acute lymphoblastic leukemia and preclinical evaluation of the MEK inhibitor, selumetinib, has shown excellent activity in those with RAS pathway mutations. The proapoptotic protein, BIM is pivotal in the induction of cell death by both selumetinib and glucocorticoids, suggesting the potential for synergy. Thus, combination indices for dexamethasone and selumetinib were determined in RAS pathway mutated acute lymphoblastic leukemia primagraft cells in vitro and were indicative of strong synergism (CI <0.2; n=5). Associated pharmacodynamic assays were consistent with the hypothesis that the drug combination enhanced BIM upregulation over single drug alone. Dosing of dexamethasone and selumetinib singly, and in combination in mice engrafted with primary derived RAS pathway mutated leukemia cells, resulted in a marked reduction in spleen size which was significantly greater with the drug combination. Assessment of the central nervous system leukaemia burden showed a significant reduction in drug treated mice, with no detectable leukemia in those treated with the drug combination. These data suggest that a selumetinib-dexamethasone combination may be highly effective in RAS pathway mutated acute lymphoblastic leukemia and an international phase I/II clinical trial of dexamethasone and selumetinib (Seludex trial) is underway for children with multiple relapsed/refractory disease.

Research paper thumbnail of Preclinical evaluation of the first intravenous small molecule MDM2 antagonist alone and in combination with temozolomide in neuroblastoma

International Journal of Cancer, 2018

High‐risk neuroblastoma, a predominantly TP53 wild‐type (wt) tumour, is incurable in >50% pati... more High‐risk neuroblastoma, a predominantly TP53 wild‐type (wt) tumour, is incurable in >50% patients supporting the use of MDM2 antagonists as novel therapeutics. Idasanutlin (RG7388) shows in vitro synergy with chemotherapies used to treat neuroblastoma. This is the first study to evaluate the in vivo efficacy of the intravenous idasanutlin prodrug, RO6839921 (RG7775), both alone and in combination with temozolomide in TP53 wt orthotopic neuroblastoma models. Detection of active idasanutlin using liquid chromatography‐mass spectrometry and p53 pathway activation by ELISA assays and Western analysis showed peak plasma levels 1 h post‐treatment with maximal p53 pathway activation 3–6 h post‐treatment. RO6839921 and temozolomide, alone or in combination in mice implanted with TP53 wt SHSY5Y‐Luc and NB1691‐Luc cells showed that combined RO6839921 and temozolomide led to greater tumour growth inhibition and increase in survival compared to vehicle control. Overall, RO6839921 had a favo...

Research paper thumbnail of Functional characterisation of a novel ovarian cancer cell line, NUOC-1

Oncotarget, Jan 18, 2017

Cell lines provide a powerful model to study cancer and here we describe a new spontaneously immo... more Cell lines provide a powerful model to study cancer and here we describe a new spontaneously immortalised epithelial ovarian cancer cell line (NUOC-1) derived from the ascites collected at a time of primary debulking surgery for a mixed endometrioid / clear cell / High Grade Serous (HGS) histology. This spontaneously immortalised cell line was found to maintain morphology and epithelial markers throughout long-term culture. NUOC-1 cells grow as an adherent monolayer with a doubling time of 58 hours. The cells are TP53 wildtype, positive for PTEN, HER2 and HER3 expression but negative for oestrogen, progesterone and androgen receptor expression. NUOC-1 cells are competent in homologous recombination and non-homologous end joining, but base excision repair defective. Karyotype analysis demonstrated a complex tetraploid karyotype. SNP array analysis of parent and derived subpopulations (NUOC-1-A1 and NUOC-1-A2) cells demonstrated heterogeneous cell populations with numerous copy number...

Research paper thumbnail of Inhibition of monocarboxylate transporter 1 by AZD3965 as a novel therapeutic approach for the treatment of diffuse large B-cell lymphoma and Burkitt lymphoma

Haematologica, Jul 6, 2017

Inhibition of monocarboxylate transporter 1 has been proposed as a therapeutic approach to pertur... more Inhibition of monocarboxylate transporter 1 has been proposed as a therapeutic approach to perturb lactate shuttling in tumor cells that lack monocarboxylate transporter 4. We examined the monocarboxylate transporter 1 inhibitor AZD3965, currently in phase I clinical studies, as a potential therapy for diffuse large B-cell lymphoma and Burkitt lymphoma. Whilst extensive monocarboxylate transporter 1 protein was found in 120 diffuse large B-cell lymphoma and 10 Burkitt lymphoma patient tumors, monocarboxylate transporter 4 protein expression was undetectable in 73% of the diffuse large B-cell lymphoma samples and undetectable or negligible in each Burkitt lymphoma sample. AZD3965 treatment led to a rapid accumulation of intracellular lactate in a panel of lymphoma cell lines with low monocarboxylate transporter 4 protein expression and potently inhibited their proliferation. Metabolic changes induced by AZD3965 in lymphoma cells were consistent with a feedback inhibition on glycolysi...

Research paper thumbnail of Structure-guided design of purine-based probes for selective Nek2 inhibition

Oncotarget, 2017

Nek2 (NIMA-related kinase 2) is a cell cycle-dependent serine/threonine protein kinase that regul... more Nek2 (NIMA-related kinase 2) is a cell cycle-dependent serine/threonine protein kinase that regulates centrosome separation at the onset of mitosis. Overexpression of Nek2 is common in human cancers and suppression can restrict tumor cell growth and promote apoptosis. Nek2 inhibition with small molecules, therefore, offers the prospect of a new therapy for cancer. To achieve this goal, a better understanding of the requirements for selective-inhibition of Nek2 is required. 6-Alkoxypurines were identified as ATP-competitive inhibitors of Nek2 and CDK2. Comparison with CDK2-inhibitor structures indicated that judicious modification of the 6-alkoxy and 2-arylamino substituents could achieve discrimination between Nek2 and CDK2. In this study, a library of 6-cyclohexylmethoxy-2-arylaminopurines bearing carboxamide, sulfonamide and urea substituents on the 2-arylamino ring was synthesized. Few of these compounds were selective for Nek2 over CDK2, with the best result being obtained for 3-((6-(cyclohexylmethoxy)-9H-purin-2-yl)amino)-N,N-dimethylbenzamide (CDK2 IC 50 = 7.0 μM; Nek2 IC 50 = 0.62 μM) with >10-fold selectivity. Deletion of the 6-substituent abrogated activity against both Nek2 and CDK2. Nine compounds containing an (E)-dialkylaminovinyl substituent at C-6, all showed selectivity for Nek2, e.g. (E)-6-(2-(azepan-1-yl)vinyl)-N-phenyl-9H-purin-2-amine (CDK2 IC 50 = 2.70 μM; Nek2 IC 50 = 0.27 μM). Structural biology of selected compounds enabled a partial rationalization of the observed structure activity relationships and mechanism of Nek2 activation. This showed that carboxamide 11 is the first reported inhibitor of Nek2 in the DFG-in conformation.

Research paper thumbnail of Combined PI3K and CDK2 inhibition induces cell death and enhances in vivo antitumour activity in colorectal cancer

British journal of cancer, Sep 6, 2016

The phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway is commonly d... more The phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway is commonly deregulated in human cancer, hence many PI3K and mTOR inhibitors have been developed and have now reached clinical trials. Similarly, CDKs have been investigated as cancer drug targets. We have synthesised and characterised a series of 6-aminopyrimidines identified from a kinase screen that inhibit PI3K and/or mTOR and/or CDK2. Kinase inhibition, tumour cell growth, cell cycle distribution, cytotoxicity and signalling experiments were undertaken in HCT116 and HT29 colorectal cancer cell lines, and in vivo HT29 efficacy studies. 2,6-Diaminopyrimidines with an O(4)-cyclohexylmethyl substituent and a C-5-nitroso or cyano group (1,2,5) induced cell cycle phase alterations and were growth inhibitory (GI50<20 μM). Compound 1, but not 2 or 5, potently inhibits CDK2 (IC50=0.1 nM) as well as PI3K, and was cytotoxic at growth inhibitory concentrations. Consistent with kinase inhibition data, com...

Research paper thumbnail of The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma

Oncogene, Jan 2, 2015

The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and fu... more The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and functions as a tumour-promoting transcription factor. Here we report the surprising result that c-rel-/- mice display significantly earlier lymphomagenesis in the c-Myc driven, Eμ-Myc model of B-cell lymphoma. c-Rel loss also led to earlier onset of disease in a separate TCL1-Tg-driven lymphoma model. Tumour reimplantation experiments indicated that this is an effect intrinsic to the Eμ-Myc lymphoma cells but, counterintuitively, c-rel-/- Eμ-Myc lymphoma cells were more sensitive to apoptotic stimuli. To learn more about why loss of c-Rel led to earlier onset of disease, microarray gene expression analysis was performed on B cells from 4-week-old, wild-type and c-rel-/- Eμ-Myc mice. Extensive changes in gene expression were not seen at this age, but among those transcripts significantly downregulated by the loss of c-Rel was the B-cell tumour suppressor BTB and CNC homology 2 (Bach2). Quan...

Research paper thumbnail of Central nervous system penetration and enhancement of temozolomide activity in childhood medulloblastoma models by poly(ADP-ribose) polymerase inhibitor AG-014699

British journal of cancer, Jan 9, 2010

Temozolomide shows activity against medulloblastoma, the most common malignant paediatric brain t... more Temozolomide shows activity against medulloblastoma, the most common malignant paediatric brain tumour. Poly(ADP-ribose) polymerase (PARP) inhibitors enhance temozolomide activity in extracranial adult and paediatric human malignancies. We assessed the effect of AG-014699, a clinically active PARP inhibitor, on temozolomide-induced growth inhibition in human medulloblastoma models. Pharmacokinetic, pharmacodynamic and toxicity assays were performed in tumour-bearing mice. Sensitivity to temozolomide in vitro was consistent with methylguanine methyltransferase (MGMT) and DNA mismatch repair (MMR) status; MGMT(+) MMR(+) D384Med cells (temozolomide GI(50)=220 μM), representative of most primary medulloblastomas, were sensitised fourfold by AG-014699; MGMT⁻ MMR(+) D425Med cells were hypersensitive (GI(50)=9 μM) and not sensitised by AG-014699, whereas MGMT(+) MMR⁻ temozolomide-resistant D283Med cells (GI₅₀=807 μM) were sensitised 20-fold. In xenograft models, co-administration of AG-014...

Research paper thumbnail of Identification of potent nontoxic poly(ADP-Ribose) polymerase-1 inhibitors: chemopotentiation and pharmacological studies

Clinical cancer research : an official journal of the American Association for Cancer Research, 2003

The nuclear enzyme poly(ADP-ribose) polymerase (PARP-1) facilitates DNA repair, and is, therefore... more The nuclear enzyme poly(ADP-ribose) polymerase (PARP-1) facilitates DNA repair, and is, therefore, an attractive target for anticancer chemo- and radio-potentiation. Novel benzimidazole-4-carboxamides (BZ1-6) and tricyclic lactam indoles (TI1-5) with PARP-1 K(i) values of <10 nM have been identified. Whole cell PARP-1 inhibition, intrinsic cell growth inhibition, and chemopotentiation of the cytotoxic agents temozolomide (TM) and topotecan (TP) were evaluated in LoVo human colon carcinoma cells. The acute toxicity of the inhibitors was investigated in PARP-1 null and wild-type mice. Tissue distribution and in vivo chemopotentiation activity was determined in nude mice bearing LoVo xenografts. At a nontoxic concentration (0.4 micro M) the PARP-1 inhibitors potentiated TM-induced growth inhibition 1.0-5.3-fold and TP-induced inhibition from 1.0-2.1-fold. Concentrations of the PARP-1 inhibitors that alone inhibited cell growth by 50% ranged from 8 to 94 micro M. Maximum potentiation...

Research paper thumbnail of Vasoactivity of Rucaparib, a PARP-1 Inhibitor, is a Complex Process that Involves Myosin Light Chain Kinase, P2 Receptors, and PARP Itself

PLOS ONE, 2015

Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the... more Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD + exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

Research paper thumbnail of DNA-PK—A Candidate Driver of Hepatocarcinogenesis and Tissue Biomarker That Predicts Response to Treatment and Survival

Clinical Cancer Research, 2014

Purpose: Therapy resistance and associated liver disease make hepatocellular carcinomas (HCC) dif... more Purpose: Therapy resistance and associated liver disease make hepatocellular carcinomas (HCC) difficult to treat with traditional cytotoxic therapies, whereas newer targeted approaches offer only modest survival benefit. We focused on DNA-dependent protein kinase, DNA-PKcs, encoded by PRKDC and central to DNA damage repair by nonhomologous end joining. Our aim was to explore its roles in hepatocarcinogenesis and as a novel therapeutic candidate. Experimental Design: PRKDC was characterized in liver tissues from of 132 patients [normal liver (n = 10), cirrhotic liver (n = 13), dysplastic nodules (n = 18), HCC (n = 91)] using Affymetrix U133 Plus 2.0 and 500 K Human Mapping SNP arrays (cohort 1). In addition, we studied a case series of 45 patients with HCC undergoing diagnostic biopsy (cohort 2). Histological grading, response to treatment, and survival were correlated with DNA-PKcs quantified immunohistochemically. Parallel in vitro studies determined the impact of DNA-PK on DNA rep...

Research paper thumbnail of Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition

Nature Medicine, 2011

Homologous recombination (HR)-defective cells, such as those lacking BRCA1/2, are hypersensitive ... more Homologous recombination (HR)-defective cells, such as those lacking BRCA1/2, are hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition. However, BRCA-deficient tumors represent only a small fraction of adult cancers, potentially restricting the therapeutic utility of PARP inhibitor monotherapy. We previously showed that cyclin-dependent kinase (cdk)1 phosphorylates BRCA1, an event essential for efficient BRCA1 focus formation. Here, we show that cdk1 depletion or inhibition compromises the cellular capacity to repair DNA by HR. Combined cdk1 and PARP inhibition in BRCA wild-type cancer cells results in reduced colony formation, delayed human tumor xenograft growth and tumor regression with prolonged survival in a mouse lung adenocarcinoma model. Cdk1 inhibition did not sensitize non-transformed cells or Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:

Research paper thumbnail of Preclinical evaluation of a novel pyrimidopyrimidine for the prevention of nucleoside and nucleobase reversal of antifolate cytotoxicity

Molecular Cancer Therapeutics, 2009

Antifolates have been used to treat cancer for the last 50 years and remain the mainstay of many ... more Antifolates have been used to treat cancer for the last 50 years and remain the mainstay of many therapeutic regimes. Nucleoside salvage, which depends on plasma membrane transport, can compromise the activity of antifolates. The cardiovascular drug dipyridamole inhibits nucleoside transport and enhances antifolate cytotoxicity in vitro, but its clinical activity is compromised by binding to the plasma protein α1-acid glycoprotein (AGP). We report the development of a novel pyrimidopyrimidine analogue of dipyridamole, NU3153, which has equivalent potency to dipyridamole, remains active in the presence of physiologic levels of AGP, inhibits thymidine incorporation into DNA, and prevents thymidine and hypoxanthine rescue from the multitargeted antifolate, pemetrexed. Pharmacokinetic evaluation of NU3153 suggested that a soluble prodrug would improve the in vivo activity. The valine prodrug of NU3153, NU3166, rapidly broke down to NU3153 in vitro and in vivo. Plasma NU3153 concentratio...

Research paper thumbnail of Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial

Molecular Cancer Therapeutics, 2007

Poly(ADP-ribose) polymerase (PARP)-1 (EC 2.4.2.30) is a nuclear enzyme that promotes the base exc... more Poly(ADP-ribose) polymerase (PARP)-1 (EC 2.4.2.30) is a nuclear enzyme that promotes the base excision repair of DNA breaks. Inhibition of PARP-1 enhances the efficacy of DNA alkylating agents, topoisomerase I poisons, and ionizing radiation. Our aim was to identify a PARP inhibitor for clinical trial from a panel of 42 potent PARP inhibitors (Ki, 1.4–15.1 nmol/L) based on the quinazolinone, benzimidazole, tricyclic benzimidazole, tricyclic indole, and tricyclic indole-1-one core structures. We evaluated chemosensitization of temozolomide and topotecan using LoVo and SW620 human colorectal cells; in vitro radiosensitization was measured using LoVo cells, and the enhancement of antitumor activity of temozolomide was evaluated in mice bearing SW620 xenografts. Excellent chemopotentiation and radiopotentiation were observed in vitro, with 17 of the compounds causing a greater temozolomide and topotecan sensitization than the benchmark inhibitor AG14361 and 10 compounds were more potent...

Research paper thumbnail of The Clinically Active PARP Inhibitor AG014699 Ameliorates Cardiotoxicity but Does Not Enhance the Efficacy of Doxorubicin, despite Improving Tumor Perfusion and Radiation Response in Mice

Molecular Cancer Therapeutics, 2011

AG014699 was the first inhibitor of the DNA repair enzyme PARP-1 to enter clinical trial in cance... more AG014699 was the first inhibitor of the DNA repair enzyme PARP-1 to enter clinical trial in cancer patients. In addition to enhancing the cytotoxic effect of DNA-damaging chemotherapies, we have previously shown that AG014699 is vasoactive, thereby having the potential to improve drug biodistribution. The effectiveness of the clinical agent doxorubicin is confounded both by poor tumor penetration and cardiotoxicity elicited via PARP hyperactivation. In this study, we analyzed the impact of AG014699 on doxorubicin tolerance and response in breast (MDA-MB-231) and colorectal (SW620, LoVo) tumor models in vitro and in vivo. As anticipated, AG014699 did not potentiate the response to doxorubicin in vitro. In vivo, AG014699 did not influence the pharmacokinetics of doxorubicin; however, it did ameliorate cardiotoxicity. Both toxicity and extent of amelioration were more pronounced in male than in female mice. AG014699 improved vessel perfusion in both MDA-MB-231 and SW620 tumors; however...

Research paper thumbnail of Anticancer Chemosensitization and Radiosensitization by the Novel Poly(ADP-ribose) Polymerase-1 Inhibitor AG14361

JNCI Journal of the National Cancer Institute, 2004

Background: Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates the repair of DNA strand breaks. I... more Background: Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates the repair of DNA strand breaks. Inhibiting PARP-1 increases the cytotoxicity of DNA-damaging chemotherapy and radiation therapy in vitro. Because classical PARP-1 inhibitors have limited clinical utility, we investigated whether AG14361, a novel potent PARP-1 inhibitor (inhibition constant <5 nM), enhances the effects of chemotherapy and radiation therapy in human cancer cell cultures and xenografts. Methods: The effect of AG14361 on the antitumor activity of the DNA alkylating agent temozolomide, topoisomerase I poisons topotecan or irinotecan, or x-irradiation or ␥-radiation was investigated in human cancer cell lines A549, LoVo, and SW620 by proliferation and survival assays and in xenografts in mice by tumor volume determination. The specificity of AG14361 for PARP-1 was investigated by microarray analysis and by antiproliferation and acute toxicity assays in PARP-1 ؊/؊ and PARP-1 ؉/؉ cells and mice. After intraperitoneal administration, the concentration of AG14361 was determined in mouse plasma and tissues, and its effect on PARP-1 activity was determined in tumor homogenates. All statistical tests were two-sided. Results: AG14361 at 0.4 M did not affect cancer cell gene expression or growth, but it did increase the antiproliferative activity of temozolomide (e.g., in LoVo cells by 5.5-fold, 95% confidence interval [CI] ‫؍‬ 4.9-fold to 5.9-fold; P ‫؍‬ .004) and topotecan (e.g., in LoVo cells by 1.6-fold, 95% CI ‫؍‬ 1.3-fold to 1.9-fold; P ‫؍‬ .002) and inhibited recovery from potentially lethal ␥-radiation damage in LoVo cells by 73% (95% CI ‫؍‬ 48% to 98%). In vivo, nontoxic doses of AG14361 increased the delay of LoVo xenograft growth induced by irinotecan, x-irradiation, or temozolomide by two-to threefold. The combination of AG14361 and temozolomide caused complete regression of SW620 xenograft tumors. AG14361 was retained in xenografts in which PARP-1 activity was inhibited by more than 75% for at least 4 hours. Conclusion: AG14361 is, to our knowledge, the first high-potency PARP-1 inhibitor with the specificity and in vivo activity to enhance chemotherapy and radiation therapy of human cancer. [J Natl Cancer Inst 2004;96:56-67] Poly(ADP-ribose) polymerase-1 (PARP-1, EC 2.4.2.30) is an abundant 116-kd nuclear enzyme that is constitutively expressed. It is the first and most extensively characterized member of an expanding family of PARP enzymes (1). In response to DNA strand breaks, PARP-1 catalyzes the rapid synthesis of ADP-ribose polymers from the substrate NAD ϩ , facilitating

Research paper thumbnail of Supplementary Methods from DNA-PK—A Candidate Driver of Hepatocarcinogenesis and Tissue Biomarker That Predicts Response to Treatment and Survival

Purpose: Therapy resistance and associated liver disease make hepatocellular carcinomas (HCC) dif... more Purpose: Therapy resistance and associated liver disease make hepatocellular carcinomas (HCC) difficult to treat with traditional cytotoxic therapies, whereas newer targeted approaches offer only modest survival benefit. We focused on DNA-dependent protein kinase, DNA-PKcs, encoded by PRKDC and central to DNA damage repair by nonhomologous end joining. Our aim was to explore its roles in hepatocarcinogenesis and as a novel therapeutic candidate. Experimental Design: PRKDC was characterized in liver tissues from of 132 patients [normal liver (n ¼ 10), cirrhotic liver (n ¼ 13), dysplastic nodules (n ¼ 18), HCC (n ¼ 91)] using Affymetrix U133 Plus 2.0 and 500 K Human Mapping SNP arrays (cohort 1). In addition, we studied a case series of 45 patients with HCC undergoing diagnostic biopsy (cohort 2). Histological grading, response to treatment, and survival were correlated with DNA-PKcs quantified immunohistochemically. Parallel in vitro studies determined the impact of DNA-PK on DNA repair and response to cytotoxic therapy. Results: Increased PRKDC expression in HCC was associated with amplification of its genetic locus in cohort 1. In cohort 2, elevated DNA-PKcs identified patients with treatment-resistant HCC, progressing at a median of 4.5 months compared with 16.9 months, whereas elevation of activated pDNA-PK independently predicted poorer survival. DNA-PKcs was high in HCC cell lines, where its inhibition with NU7441 potentiated irradiation and doxorubicin-induced cytotoxicity, whereas the combination suppressed HCC growth in vitro and in vivo. Conclusions: These data identify PRKDC/DNA-PKcs as a candidate driver of hepatocarcinogenesis, whose biopsy characterization at diagnosis may impact stratification of current therapies, and whose specific future targeting may overcome resistance. Clin Cancer Res; 21(4); 925-33. Ó2014 AACR.

Research paper thumbnail of Differential utilization of regulatory domains within the alpha 1(I) collagen promoter in osseous and fibroblastic cells

The Journal of cell biology, 1992

Type I collagen is expressed in a variety of connective tissue cells and its transcriptional regu... more Type I collagen is expressed in a variety of connective tissue cells and its transcriptional regulation is highly complex because of the influence of numerous developmental, environmental, and hormonal factors. To investigate the molecular basis for one aspect of this complex regulation, the expression of alpha 1(I) collagen (COL1A1) gene in osseous tissues, we fused a 3.6-kb DNA fragment between bases -3,521 and +115 of the rat COL1A1 promoter, and three deletion mutants, to the chloramphenicol acetyltransferase (CAT) marker gene. The expression of these ColCAT transgenes was measured in stably transfected osteoblastic cell lines ROS 17/2.8, Py-la, and MC3T3-E1 and three fibroblastic lines NIH-3T3, Rat-1, and EL2. Deletion of the distal 1.2-kb fragment of the full-length ColCAT 3.6 construct reduced the promoter activity 7- to 30-fold in the osteoblastic cell lines, twofold in EL2 and had no effect in NIH-3T3 and Rat-1 cells. To begin to assess the function of COL1A1 upstream regul...

Research paper thumbnail of Side Population in Human Non-Muscle Invasive Bladder Cancer Enriches for Cancer Stem Cells That Are Maintained by MAPK Signalling

PLoS ONE, 2012

Side population (SP) and ABC transporter expression enrich for stem cells in numerous tissues. We... more Side population (SP) and ABC transporter expression enrich for stem cells in numerous tissues. We explored if this phenotype characterised human bladder cancer stem cells (CSCs) and attempted to identify regulatory mechanisms. Focusing on non-muscle invasive bladder cancer (NMIBC), multiple human cell lines were used to characterise SP and ABC transporter expression. In vitro and in vivo phenotypic and functional assessments of CSC behaviour were undertaken. Expression of putative CSC marker ABCG2 was assessed in clinical NMIBC samples (n = 148), and a role for MAPK signalling, a central mechanism of bladder tumourigenesis, was investigated. Results showed that the ABCG2 transporter was predominantly expressed and was up-regulated in the SP fraction by 3-fold (ABCG2 hi) relative to the non-SP (NSP) fraction (ABCG2 low). ABCG2 hi SP cells displayed enrichment of stem cell markers (Nanog, Notch1 and SOX2) and a threefold increase in colony forming efficiency (CFE) in comparison to ABCG2 low NSP cells. In vivo, ABCG2 hi SP cells enriched for tumour growth compared with ABCG2 low NSP cells, consistent with CSCs. pERK was constitutively active in ABCG2 hi SP cells and MEK inhibition also inhibited the ABCG2 hi SP phenotype and significantly suppressed CFE. Furthermore, on examining clinical NMIBC samples, ABCG2 expression correlated with increased recurrence and decreased progression free survival. Additionally, pERK expression also correlated with decreased progression free survival, whilst a positive correlation was further demonstrated between ABCG2 and pERK expression. In conclusion, we confirm ABCG2 hi SP enriches for CSCs in human NMIBC and MAPK/ERK pathway is a suitable therapeutic target.

Research paper thumbnail of Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase

Nature, 2007

and we want to declare our relationship with these patents. N.J.C. and T.H., and T.H. alone, are ... more and we want to declare our relationship with these patents. N.J.C. and T.H., and T.H. alone, are named inventors on these patents, respectively, but are not owners of the patents nor do they have shares in the companies or institutions to which the patents belong. However, because the value of these patents has increased, owing to further results obtained in other laboratories since publication, N.J.C. and T.H. now wish to declare possible competing financial interests.

Research paper thumbnail of Glucocorticoids and selumetinib are highly synergistic in RAS pathway-mutated childhood acute lymphoblastic leukemia through upregulation of BIM

Haematologica, 2019

New drugs are needed for relapsed acute lymphoblastic leukemia and preclinical evaluation of the ... more New drugs are needed for relapsed acute lymphoblastic leukemia and preclinical evaluation of the MEK inhibitor, selumetinib, has shown excellent activity in those with RAS pathway mutations. The proapoptotic protein, BIM is pivotal in the induction of cell death by both selumetinib and glucocorticoids, suggesting the potential for synergy. Thus, combination indices for dexamethasone and selumetinib were determined in RAS pathway mutated acute lymphoblastic leukemia primagraft cells in vitro and were indicative of strong synergism (CI <0.2; n=5). Associated pharmacodynamic assays were consistent with the hypothesis that the drug combination enhanced BIM upregulation over single drug alone. Dosing of dexamethasone and selumetinib singly, and in combination in mice engrafted with primary derived RAS pathway mutated leukemia cells, resulted in a marked reduction in spleen size which was significantly greater with the drug combination. Assessment of the central nervous system leukaemia burden showed a significant reduction in drug treated mice, with no detectable leukemia in those treated with the drug combination. These data suggest that a selumetinib-dexamethasone combination may be highly effective in RAS pathway mutated acute lymphoblastic leukemia and an international phase I/II clinical trial of dexamethasone and selumetinib (Seludex trial) is underway for children with multiple relapsed/refractory disease.

Research paper thumbnail of Preclinical evaluation of the first intravenous small molecule MDM2 antagonist alone and in combination with temozolomide in neuroblastoma

International Journal of Cancer, 2018

High‐risk neuroblastoma, a predominantly TP53 wild‐type (wt) tumour, is incurable in >50% pati... more High‐risk neuroblastoma, a predominantly TP53 wild‐type (wt) tumour, is incurable in >50% patients supporting the use of MDM2 antagonists as novel therapeutics. Idasanutlin (RG7388) shows in vitro synergy with chemotherapies used to treat neuroblastoma. This is the first study to evaluate the in vivo efficacy of the intravenous idasanutlin prodrug, RO6839921 (RG7775), both alone and in combination with temozolomide in TP53 wt orthotopic neuroblastoma models. Detection of active idasanutlin using liquid chromatography‐mass spectrometry and p53 pathway activation by ELISA assays and Western analysis showed peak plasma levels 1 h post‐treatment with maximal p53 pathway activation 3–6 h post‐treatment. RO6839921 and temozolomide, alone or in combination in mice implanted with TP53 wt SHSY5Y‐Luc and NB1691‐Luc cells showed that combined RO6839921 and temozolomide led to greater tumour growth inhibition and increase in survival compared to vehicle control. Overall, RO6839921 had a favo...

Research paper thumbnail of Functional characterisation of a novel ovarian cancer cell line, NUOC-1

Oncotarget, Jan 18, 2017

Cell lines provide a powerful model to study cancer and here we describe a new spontaneously immo... more Cell lines provide a powerful model to study cancer and here we describe a new spontaneously immortalised epithelial ovarian cancer cell line (NUOC-1) derived from the ascites collected at a time of primary debulking surgery for a mixed endometrioid / clear cell / High Grade Serous (HGS) histology. This spontaneously immortalised cell line was found to maintain morphology and epithelial markers throughout long-term culture. NUOC-1 cells grow as an adherent monolayer with a doubling time of 58 hours. The cells are TP53 wildtype, positive for PTEN, HER2 and HER3 expression but negative for oestrogen, progesterone and androgen receptor expression. NUOC-1 cells are competent in homologous recombination and non-homologous end joining, but base excision repair defective. Karyotype analysis demonstrated a complex tetraploid karyotype. SNP array analysis of parent and derived subpopulations (NUOC-1-A1 and NUOC-1-A2) cells demonstrated heterogeneous cell populations with numerous copy number...

Research paper thumbnail of Inhibition of monocarboxylate transporter 1 by AZD3965 as a novel therapeutic approach for the treatment of diffuse large B-cell lymphoma and Burkitt lymphoma

Haematologica, Jul 6, 2017

Inhibition of monocarboxylate transporter 1 has been proposed as a therapeutic approach to pertur... more Inhibition of monocarboxylate transporter 1 has been proposed as a therapeutic approach to perturb lactate shuttling in tumor cells that lack monocarboxylate transporter 4. We examined the monocarboxylate transporter 1 inhibitor AZD3965, currently in phase I clinical studies, as a potential therapy for diffuse large B-cell lymphoma and Burkitt lymphoma. Whilst extensive monocarboxylate transporter 1 protein was found in 120 diffuse large B-cell lymphoma and 10 Burkitt lymphoma patient tumors, monocarboxylate transporter 4 protein expression was undetectable in 73% of the diffuse large B-cell lymphoma samples and undetectable or negligible in each Burkitt lymphoma sample. AZD3965 treatment led to a rapid accumulation of intracellular lactate in a panel of lymphoma cell lines with low monocarboxylate transporter 4 protein expression and potently inhibited their proliferation. Metabolic changes induced by AZD3965 in lymphoma cells were consistent with a feedback inhibition on glycolysi...

Research paper thumbnail of Structure-guided design of purine-based probes for selective Nek2 inhibition

Oncotarget, 2017

Nek2 (NIMA-related kinase 2) is a cell cycle-dependent serine/threonine protein kinase that regul... more Nek2 (NIMA-related kinase 2) is a cell cycle-dependent serine/threonine protein kinase that regulates centrosome separation at the onset of mitosis. Overexpression of Nek2 is common in human cancers and suppression can restrict tumor cell growth and promote apoptosis. Nek2 inhibition with small molecules, therefore, offers the prospect of a new therapy for cancer. To achieve this goal, a better understanding of the requirements for selective-inhibition of Nek2 is required. 6-Alkoxypurines were identified as ATP-competitive inhibitors of Nek2 and CDK2. Comparison with CDK2-inhibitor structures indicated that judicious modification of the 6-alkoxy and 2-arylamino substituents could achieve discrimination between Nek2 and CDK2. In this study, a library of 6-cyclohexylmethoxy-2-arylaminopurines bearing carboxamide, sulfonamide and urea substituents on the 2-arylamino ring was synthesized. Few of these compounds were selective for Nek2 over CDK2, with the best result being obtained for 3-((6-(cyclohexylmethoxy)-9H-purin-2-yl)amino)-N,N-dimethylbenzamide (CDK2 IC 50 = 7.0 μM; Nek2 IC 50 = 0.62 μM) with >10-fold selectivity. Deletion of the 6-substituent abrogated activity against both Nek2 and CDK2. Nine compounds containing an (E)-dialkylaminovinyl substituent at C-6, all showed selectivity for Nek2, e.g. (E)-6-(2-(azepan-1-yl)vinyl)-N-phenyl-9H-purin-2-amine (CDK2 IC 50 = 2.70 μM; Nek2 IC 50 = 0.27 μM). Structural biology of selected compounds enabled a partial rationalization of the observed structure activity relationships and mechanism of Nek2 activation. This showed that carboxamide 11 is the first reported inhibitor of Nek2 in the DFG-in conformation.

Research paper thumbnail of Combined PI3K and CDK2 inhibition induces cell death and enhances in vivo antitumour activity in colorectal cancer

British journal of cancer, Sep 6, 2016

The phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway is commonly d... more The phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway is commonly deregulated in human cancer, hence many PI3K and mTOR inhibitors have been developed and have now reached clinical trials. Similarly, CDKs have been investigated as cancer drug targets. We have synthesised and characterised a series of 6-aminopyrimidines identified from a kinase screen that inhibit PI3K and/or mTOR and/or CDK2. Kinase inhibition, tumour cell growth, cell cycle distribution, cytotoxicity and signalling experiments were undertaken in HCT116 and HT29 colorectal cancer cell lines, and in vivo HT29 efficacy studies. 2,6-Diaminopyrimidines with an O(4)-cyclohexylmethyl substituent and a C-5-nitroso or cyano group (1,2,5) induced cell cycle phase alterations and were growth inhibitory (GI50<20 μM). Compound 1, but not 2 or 5, potently inhibits CDK2 (IC50=0.1 nM) as well as PI3K, and was cytotoxic at growth inhibitory concentrations. Consistent with kinase inhibition data, com...

Research paper thumbnail of The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma

Oncogene, Jan 2, 2015

The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and fu... more The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and functions as a tumour-promoting transcription factor. Here we report the surprising result that c-rel-/- mice display significantly earlier lymphomagenesis in the c-Myc driven, Eμ-Myc model of B-cell lymphoma. c-Rel loss also led to earlier onset of disease in a separate TCL1-Tg-driven lymphoma model. Tumour reimplantation experiments indicated that this is an effect intrinsic to the Eμ-Myc lymphoma cells but, counterintuitively, c-rel-/- Eμ-Myc lymphoma cells were more sensitive to apoptotic stimuli. To learn more about why loss of c-Rel led to earlier onset of disease, microarray gene expression analysis was performed on B cells from 4-week-old, wild-type and c-rel-/- Eμ-Myc mice. Extensive changes in gene expression were not seen at this age, but among those transcripts significantly downregulated by the loss of c-Rel was the B-cell tumour suppressor BTB and CNC homology 2 (Bach2). Quan...

Research paper thumbnail of Central nervous system penetration and enhancement of temozolomide activity in childhood medulloblastoma models by poly(ADP-ribose) polymerase inhibitor AG-014699

British journal of cancer, Jan 9, 2010

Temozolomide shows activity against medulloblastoma, the most common malignant paediatric brain t... more Temozolomide shows activity against medulloblastoma, the most common malignant paediatric brain tumour. Poly(ADP-ribose) polymerase (PARP) inhibitors enhance temozolomide activity in extracranial adult and paediatric human malignancies. We assessed the effect of AG-014699, a clinically active PARP inhibitor, on temozolomide-induced growth inhibition in human medulloblastoma models. Pharmacokinetic, pharmacodynamic and toxicity assays were performed in tumour-bearing mice. Sensitivity to temozolomide in vitro was consistent with methylguanine methyltransferase (MGMT) and DNA mismatch repair (MMR) status; MGMT(+) MMR(+) D384Med cells (temozolomide GI(50)=220 μM), representative of most primary medulloblastomas, were sensitised fourfold by AG-014699; MGMT⁻ MMR(+) D425Med cells were hypersensitive (GI(50)=9 μM) and not sensitised by AG-014699, whereas MGMT(+) MMR⁻ temozolomide-resistant D283Med cells (GI₅₀=807 μM) were sensitised 20-fold. In xenograft models, co-administration of AG-014...

Research paper thumbnail of Identification of potent nontoxic poly(ADP-Ribose) polymerase-1 inhibitors: chemopotentiation and pharmacological studies

Clinical cancer research : an official journal of the American Association for Cancer Research, 2003

The nuclear enzyme poly(ADP-ribose) polymerase (PARP-1) facilitates DNA repair, and is, therefore... more The nuclear enzyme poly(ADP-ribose) polymerase (PARP-1) facilitates DNA repair, and is, therefore, an attractive target for anticancer chemo- and radio-potentiation. Novel benzimidazole-4-carboxamides (BZ1-6) and tricyclic lactam indoles (TI1-5) with PARP-1 K(i) values of <10 nM have been identified. Whole cell PARP-1 inhibition, intrinsic cell growth inhibition, and chemopotentiation of the cytotoxic agents temozolomide (TM) and topotecan (TP) were evaluated in LoVo human colon carcinoma cells. The acute toxicity of the inhibitors was investigated in PARP-1 null and wild-type mice. Tissue distribution and in vivo chemopotentiation activity was determined in nude mice bearing LoVo xenografts. At a nontoxic concentration (0.4 micro M) the PARP-1 inhibitors potentiated TM-induced growth inhibition 1.0-5.3-fold and TP-induced inhibition from 1.0-2.1-fold. Concentrations of the PARP-1 inhibitors that alone inhibited cell growth by 50% ranged from 8 to 94 micro M. Maximum potentiation...

Research paper thumbnail of Vasoactivity of Rucaparib, a PARP-1 Inhibitor, is a Complex Process that Involves Myosin Light Chain Kinase, P2 Receptors, and PARP Itself

PLOS ONE, 2015

Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the... more Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD + exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

Research paper thumbnail of DNA-PK—A Candidate Driver of Hepatocarcinogenesis and Tissue Biomarker That Predicts Response to Treatment and Survival

Clinical Cancer Research, 2014

Purpose: Therapy resistance and associated liver disease make hepatocellular carcinomas (HCC) dif... more Purpose: Therapy resistance and associated liver disease make hepatocellular carcinomas (HCC) difficult to treat with traditional cytotoxic therapies, whereas newer targeted approaches offer only modest survival benefit. We focused on DNA-dependent protein kinase, DNA-PKcs, encoded by PRKDC and central to DNA damage repair by nonhomologous end joining. Our aim was to explore its roles in hepatocarcinogenesis and as a novel therapeutic candidate. Experimental Design: PRKDC was characterized in liver tissues from of 132 patients [normal liver (n = 10), cirrhotic liver (n = 13), dysplastic nodules (n = 18), HCC (n = 91)] using Affymetrix U133 Plus 2.0 and 500 K Human Mapping SNP arrays (cohort 1). In addition, we studied a case series of 45 patients with HCC undergoing diagnostic biopsy (cohort 2). Histological grading, response to treatment, and survival were correlated with DNA-PKcs quantified immunohistochemically. Parallel in vitro studies determined the impact of DNA-PK on DNA rep...

Research paper thumbnail of Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition

Nature Medicine, 2011

Homologous recombination (HR)-defective cells, such as those lacking BRCA1/2, are hypersensitive ... more Homologous recombination (HR)-defective cells, such as those lacking BRCA1/2, are hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition. However, BRCA-deficient tumors represent only a small fraction of adult cancers, potentially restricting the therapeutic utility of PARP inhibitor monotherapy. We previously showed that cyclin-dependent kinase (cdk)1 phosphorylates BRCA1, an event essential for efficient BRCA1 focus formation. Here, we show that cdk1 depletion or inhibition compromises the cellular capacity to repair DNA by HR. Combined cdk1 and PARP inhibition in BRCA wild-type cancer cells results in reduced colony formation, delayed human tumor xenograft growth and tumor regression with prolonged survival in a mouse lung adenocarcinoma model. Cdk1 inhibition did not sensitize non-transformed cells or Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:

Research paper thumbnail of Preclinical evaluation of a novel pyrimidopyrimidine for the prevention of nucleoside and nucleobase reversal of antifolate cytotoxicity

Molecular Cancer Therapeutics, 2009

Antifolates have been used to treat cancer for the last 50 years and remain the mainstay of many ... more Antifolates have been used to treat cancer for the last 50 years and remain the mainstay of many therapeutic regimes. Nucleoside salvage, which depends on plasma membrane transport, can compromise the activity of antifolates. The cardiovascular drug dipyridamole inhibits nucleoside transport and enhances antifolate cytotoxicity in vitro, but its clinical activity is compromised by binding to the plasma protein α1-acid glycoprotein (AGP). We report the development of a novel pyrimidopyrimidine analogue of dipyridamole, NU3153, which has equivalent potency to dipyridamole, remains active in the presence of physiologic levels of AGP, inhibits thymidine incorporation into DNA, and prevents thymidine and hypoxanthine rescue from the multitargeted antifolate, pemetrexed. Pharmacokinetic evaluation of NU3153 suggested that a soluble prodrug would improve the in vivo activity. The valine prodrug of NU3153, NU3166, rapidly broke down to NU3153 in vitro and in vivo. Plasma NU3153 concentratio...

Research paper thumbnail of Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial

Molecular Cancer Therapeutics, 2007

Poly(ADP-ribose) polymerase (PARP)-1 (EC 2.4.2.30) is a nuclear enzyme that promotes the base exc... more Poly(ADP-ribose) polymerase (PARP)-1 (EC 2.4.2.30) is a nuclear enzyme that promotes the base excision repair of DNA breaks. Inhibition of PARP-1 enhances the efficacy of DNA alkylating agents, topoisomerase I poisons, and ionizing radiation. Our aim was to identify a PARP inhibitor for clinical trial from a panel of 42 potent PARP inhibitors (Ki, 1.4–15.1 nmol/L) based on the quinazolinone, benzimidazole, tricyclic benzimidazole, tricyclic indole, and tricyclic indole-1-one core structures. We evaluated chemosensitization of temozolomide and topotecan using LoVo and SW620 human colorectal cells; in vitro radiosensitization was measured using LoVo cells, and the enhancement of antitumor activity of temozolomide was evaluated in mice bearing SW620 xenografts. Excellent chemopotentiation and radiopotentiation were observed in vitro, with 17 of the compounds causing a greater temozolomide and topotecan sensitization than the benchmark inhibitor AG14361 and 10 compounds were more potent...

Research paper thumbnail of The Clinically Active PARP Inhibitor AG014699 Ameliorates Cardiotoxicity but Does Not Enhance the Efficacy of Doxorubicin, despite Improving Tumor Perfusion and Radiation Response in Mice

Molecular Cancer Therapeutics, 2011

AG014699 was the first inhibitor of the DNA repair enzyme PARP-1 to enter clinical trial in cance... more AG014699 was the first inhibitor of the DNA repair enzyme PARP-1 to enter clinical trial in cancer patients. In addition to enhancing the cytotoxic effect of DNA-damaging chemotherapies, we have previously shown that AG014699 is vasoactive, thereby having the potential to improve drug biodistribution. The effectiveness of the clinical agent doxorubicin is confounded both by poor tumor penetration and cardiotoxicity elicited via PARP hyperactivation. In this study, we analyzed the impact of AG014699 on doxorubicin tolerance and response in breast (MDA-MB-231) and colorectal (SW620, LoVo) tumor models in vitro and in vivo. As anticipated, AG014699 did not potentiate the response to doxorubicin in vitro. In vivo, AG014699 did not influence the pharmacokinetics of doxorubicin; however, it did ameliorate cardiotoxicity. Both toxicity and extent of amelioration were more pronounced in male than in female mice. AG014699 improved vessel perfusion in both MDA-MB-231 and SW620 tumors; however...

Research paper thumbnail of Anticancer Chemosensitization and Radiosensitization by the Novel Poly(ADP-ribose) Polymerase-1 Inhibitor AG14361

JNCI Journal of the National Cancer Institute, 2004

Background: Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates the repair of DNA strand breaks. I... more Background: Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates the repair of DNA strand breaks. Inhibiting PARP-1 increases the cytotoxicity of DNA-damaging chemotherapy and radiation therapy in vitro. Because classical PARP-1 inhibitors have limited clinical utility, we investigated whether AG14361, a novel potent PARP-1 inhibitor (inhibition constant <5 nM), enhances the effects of chemotherapy and radiation therapy in human cancer cell cultures and xenografts. Methods: The effect of AG14361 on the antitumor activity of the DNA alkylating agent temozolomide, topoisomerase I poisons topotecan or irinotecan, or x-irradiation or ␥-radiation was investigated in human cancer cell lines A549, LoVo, and SW620 by proliferation and survival assays and in xenografts in mice by tumor volume determination. The specificity of AG14361 for PARP-1 was investigated by microarray analysis and by antiproliferation and acute toxicity assays in PARP-1 ؊/؊ and PARP-1 ؉/؉ cells and mice. After intraperitoneal administration, the concentration of AG14361 was determined in mouse plasma and tissues, and its effect on PARP-1 activity was determined in tumor homogenates. All statistical tests were two-sided. Results: AG14361 at 0.4 M did not affect cancer cell gene expression or growth, but it did increase the antiproliferative activity of temozolomide (e.g., in LoVo cells by 5.5-fold, 95% confidence interval [CI] ‫؍‬ 4.9-fold to 5.9-fold; P ‫؍‬ .004) and topotecan (e.g., in LoVo cells by 1.6-fold, 95% CI ‫؍‬ 1.3-fold to 1.9-fold; P ‫؍‬ .002) and inhibited recovery from potentially lethal ␥-radiation damage in LoVo cells by 73% (95% CI ‫؍‬ 48% to 98%). In vivo, nontoxic doses of AG14361 increased the delay of LoVo xenograft growth induced by irinotecan, x-irradiation, or temozolomide by two-to threefold. The combination of AG14361 and temozolomide caused complete regression of SW620 xenograft tumors. AG14361 was retained in xenografts in which PARP-1 activity was inhibited by more than 75% for at least 4 hours. Conclusion: AG14361 is, to our knowledge, the first high-potency PARP-1 inhibitor with the specificity and in vivo activity to enhance chemotherapy and radiation therapy of human cancer. [J Natl Cancer Inst 2004;96:56-67] Poly(ADP-ribose) polymerase-1 (PARP-1, EC 2.4.2.30) is an abundant 116-kd nuclear enzyme that is constitutively expressed. It is the first and most extensively characterized member of an expanding family of PARP enzymes (1). In response to DNA strand breaks, PARP-1 catalyzes the rapid synthesis of ADP-ribose polymers from the substrate NAD ϩ , facilitating