INTERFACE ENERGY - Academia.edu (original) (raw)
Uploads
Papers by INTERFACE ENERGY
ES Materials & Manufacturing, 2019
It is studied that the thermal conductivity of graphene periodically embedded with four-and eight... more It is studied that the thermal conductivity of graphene periodically embedded with four-and eightmembered rings (GFERs) by using nonequilibrium molecular dynamics simulations. This kind of structure has been experimentally synthesized recently. The dependence of thermal conductivity on the length (L) and temperature(T) is investigated. It is found that the thermal conductivity of GFERs is significantly lower than that of pristine graphene. On the other hand, the length dependence of thermal conductivity follows ~ logL behavior. In addition, the −α temperature dependence of thermal conductivity of GFERs follows ~T behavior. It is also found that there exists large thermal rectification (TR) in graphene-GFERs heterostructures, the heat flux from the pristine graphene to the GFERs direction is larger than that in the opposite direction. The dependence of the TR ratio on system parameters is investigated.
ES Materials & Manufacturing, 2019
Tailoring thermal properties with nanostructured materials can be of vital importance for many ap... more Tailoring thermal properties with nanostructured materials can be of vital importance for many applications. Generally classical phonon size effects are employed to reduce the thermal conductivity, where strong phonon scattering by nanostructured interfaces or boundaries can dramatically suppress the heat conduction. When these boundaries or interfaces are arranged in a periodic pattern, coherent phonons may have interference and modify the phonon dispersion, leading to dramatically reduced thermal conductivity. Such coherent phonon transport has been widely studied for superlattice films and recently emphasized for periodic nanoporous patterns. Although the wave effects have been proposed for reducing the thermal conductivity, more recent experimental evidence shows that such effects can only be critical at an ultralow temperature, i.e., around 10 K or below. At room temperature, the impacted phonons are mostly restricted to hypersonic modes that contribute little to the thermal conductivity. In this review, the theoretical and experimental studies of periodic porous structures are summarized and compared. The general applications of periodic nanostructured materials are further discussed.
ES Materials & Manufacturing, 2019
It is studied that the thermal conductivity of graphene periodically embedded with four-and eight... more It is studied that the thermal conductivity of graphene periodically embedded with four-and eightmembered rings (GFERs) by using nonequilibrium molecular dynamics simulations. This kind of structure has been experimentally synthesized recently. The dependence of thermal conductivity on the length (L) and temperature(T) is investigated. It is found that the thermal conductivity of GFERs is significantly lower than that of pristine graphene. On the other hand, the length dependence of thermal conductivity follows ~ logL behavior. In addition, the −α temperature dependence of thermal conductivity of GFERs follows ~T behavior. It is also found that there exists large thermal rectification (TR) in graphene-GFERs heterostructures, the heat flux from the pristine graphene to the GFERs direction is larger than that in the opposite direction. The dependence of the TR ratio on system parameters is investigated.
ES Materials & Manufacturing, 2019
Tailoring thermal properties with nanostructured materials can be of vital importance for many ap... more Tailoring thermal properties with nanostructured materials can be of vital importance for many applications. Generally classical phonon size effects are employed to reduce the thermal conductivity, where strong phonon scattering by nanostructured interfaces or boundaries can dramatically suppress the heat conduction. When these boundaries or interfaces are arranged in a periodic pattern, coherent phonons may have interference and modify the phonon dispersion, leading to dramatically reduced thermal conductivity. Such coherent phonon transport has been widely studied for superlattice films and recently emphasized for periodic nanoporous patterns. Although the wave effects have been proposed for reducing the thermal conductivity, more recent experimental evidence shows that such effects can only be critical at an ultralow temperature, i.e., around 10 K or below. At room temperature, the impacted phonons are mostly restricted to hypersonic modes that contribute little to the thermal conductivity. In this review, the theoretical and experimental studies of periodic porous structures are summarized and compared. The general applications of periodic nanostructured materials are further discussed.