Igor Kofman - Academia.edu (original) (raw)
Papers by Igor Kofman
Scientific reports, Jan 9, 2017
The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt... more The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and axial body unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6° HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n = 12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging was used to quantify distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreases...
Frontiers in systems neuroscience, 2017
The current study characterizes brain fMRI activation in response to two modes of vestibular stim... more The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: Skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex [saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)], or an ocular muscle response [utricle-mediated ocular VEMP (oVEMP)]. Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered sku...
Frontiers in Systems Neuroscience, 2016
NeuroImage, Jan 13, 2016
Sensorimotor functioning is adaptively altered following long-duration spaceflight. The question ... more Sensorimotor functioning is adaptively altered following long-duration spaceflight. The question of whether microgravity affects other central nervous system functions such as brain network organization and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to an established spaceflight analog on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. These bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Resting state functional magnetic resonance imaging (rs-fMRI) and behavioral data were obtained at seven time points averaging around: 12 and 8days prior to bed rest; 7, 50, and 70days during bed rest; and 8 and 12days after bed rest. To assess potential confounding effects due to scanning interv...
Frontiers in Systems Neuroscience, 2015
1. Dynamic visual acuity (DVA) is reduced in the vertical plane at frequencies of 2 Hz and in the... more 1. Dynamic visual acuity (DVA) is reduced in the vertical plane at frequencies of 2 Hz and in the horizontal plane at frequencies of 0.8 Hz. DVA varies with target location, with acuity optimized for targets in the plane of motion. Perturbations at low frequency motions (0.1-2 Hz) may exacerbate sensorimotor deficits after space flight. 2. Low imperceptible levels of white noise based electrical stimulation of the vestibular system improves balance performance consistent with the stochastic resonance phenomenon in normal healthy control subjects. The amplitude of optimal stimulus for improving balance performance was predominantly in the range of 100-400 μA. 3. An SRVS based device may be fielded, either as a training modality to enhance adaptability or skill acquisition, or as a miniature patch type stimulator that may be worn by astronauts to enhance adaptation following gravitational transitions including people with disabilities due to aging or disease, improving posture and loc...
Experimental Brain Research, 2011
Stochastic resonance (SR) is a phenomenon whereby the response of a non-linear system to a weak p... more Stochastic resonance (SR) is a phenomenon whereby the response of a non-linear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. Stochastic resonance using imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, has been shown to significantly improve ocular stabilization reflexes in response to whole-body tilt; improved balance performance during postural disturbances and optimize covariance between the weak input periodic signals introduced via venous blood pressure receptors and the heart rate responses. In our study, 15 subjects stood on a compliant surface with their eyes closed. They were given low-amplitude binaural bipolar stochastic electrical stimulation of the vestibular organs in two frequency ranges of 1-2 and 0-30 Hz over the amplitude range of 0 to ±700 lA. Subjects were instructed to maintain an upright stance during 43-s trials, which consisted of baseline (zero amplitude) and stimulation (non-zero amplitude) periods. Measures of stability of the head and trunk using inertial motion unit sensors attached to these segments and the whole body using a force plate were measured and quantified in the mediolateral plane. Using a multivariate optimization criterion, our results show that the low levels of vestibular stimulation given to the vestibular organs improved balance performance in normal healthy subjects in the range of 5-26% consistent with the stochastic resonance phenomenon. In our study, 8 of 15 and 10 of 15 subjects were responsive for the 1-2-and 0-30-Hz stimulus signals, respectively. The improvement in balance performance did not differ significantly between the stimulations in the two frequency ranges. The amplitude of optimal stimulus for improving balance performance was predominantly in the range of ±100 to ±400 lA. A device based on SR stimulation of the vestibular system might be useful as either a training modality to enhance adaptability or skill acquisition, or as a miniature patch-type stimulator that may be worn by people with disabilities due to aging or disease to improve posture and locomotion function.
Experimental Brain Research, 2008
The tendency to generate head movements during saccades varies from person to person. Head moveme... more The tendency to generate head movements during saccades varies from person to person. Head movement tendencies can be measured as subjects fixate sequences of illuminated targets, but the extent to which such measures reflect eye-head coupling during more natural behaviors is unknown. We quantified head movement tendencies in 20 normal subjects in a conventional laboratory experiment and in an outdoor setting in which the subjects directed their gaze spontaneously. In the laboratory, head movement tendencies during centrifugal saccades could be described by the eye-only range (EOR), customary ocular motor range (COMR), and the customary head orientation range (CHOR). An analogous EOR, COMR, and CHOR could be extracted from the centrifugal saccades executed in the outdoor setting. An additional six measures were introduced to describe the preferred ranges of eyes-in-head and head-on-torso manifest throughout the outdoor recording, i.e., not limited to the orientations following centrifugal saccades. These 12 measured variables could be distilled by factor analysis to one indoor and six outdoor factors. The factors reflect separable tendencies related to preferred ranges of visual search, head eccentricity, and eye eccentricity. Multiple correlations were found between the indoor and outdoor factors. The results demonstrate that there are multiple types of head movement tendencies, but some of these influence behavior across rather different experimental settings and tasks. Thus behavior in the two settings likely relies on common neural mechanisms, and the laboratory assays of head movement tendencies succeed in probing the mechanisms underlying eye-head coupling during more natural behaviors.
PLOS ONE, 2015
Low-level stochastic vestibular stimulation (SVS) has been associated with improved postural resp... more Low-level stochastic vestibular stimulation (SVS) has been associated with improved postural responses in the medio-lateral (ML) direction, but its effect in improving balance function in both the ML and anterior-posterior (AP) directions has not been studied. In this series of studies, the efficacy of applying low amplitude SVS in 0-30 Hz range between the mastoids in the ML direction on improving cross-planar balance function was investigated. Forty-five (45) subjects stood on a compliant surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in ML, AP and combined APML directions. Results show that binaural bipolar SVS given in the ML direction significantly improved balance performance with the peak of optimal stimulus amplitude predominantly in the range of 100-500 μA for all the three directions, exhibiting stochastic resonance (SR) phenomenon. Objective perceptual and body motion thresholds as estimates of internal noise while subjects sat on a chair with their eyes closed and were given 1 Hz bipolar binaural sinusoidal electrical stimuli were also measured. In general, there was no significant difference between estimates of perceptual and body motion thresholds. The average optimal SVS amplitude that improved balance performance (peak SVS amplitude normalized to perceptual threshold) was estimated to be 46% in ML, 53% in AP, and 50% in APML directions. A miniature patch-type SVS device may be useful to improve balance function in people with disabilities due to aging, Parkinson's disease or in astronauts returning from long-duration space flight.
PLoS ONE, Oct 11, 2018
Spaceflight negatively affects sensorimotor behavior; exercise mitigates some of these effects. H... more Spaceflight negatively affects sensorimotor behavior; exercise mitigates some of these effects. Head down tilt bed rest (HDBR) induces body unloading and fluid shifts, and is often used to investigate spaceflight effects. Here, we examined whether exercise mitigates effects of 70 days HDBR on the brain and if fitness and brain changes with HDBR are related. HDBR subjects were randomized to no-exercise (n = 5) or traditional aerobic and resistance exercise (n = 5). Additionally, a flywheel exercise group was included (n = 8). Exercise protocols for exercise groups were similar in intensity, therefore these groups were pooled in statistical analyses. Pre and post-HDBR MRI (structure and structural/functional connectivity) and physical fitness measures (lower body strength, muscle cross sectional area, VO2 max, body composition) were collected. Voxel-wise permutation analyses were used to test group differences in brain changes, and their associations with fitness changes. Comparisons ...
Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laborat... more Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (<24 hr) recovery process, nor is it possible to accurately assess the full impact of the decrements associated with long duration flight. To overcome these limitations, both the Russian and U.S. sides have implemented testing at landing sit...
Sensorimotor changes such as postural and gait instabilities can affect the functional performanc... more Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface [1]. This technique to improve detection of vestibular signals uses a stimulus delivery system that provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection.
INTRODUCTION Posture and locomotion are among the functions most affected by space flight. Postfl... more INTRODUCTION Posture and locomotion are among the functions most affected by space flight. Postflight ataxia can be quantified easily by using the walk on the floor line test with the eyes closed (WOFEC). Data from a modified WOFEC were obtained as part of an ongoing interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both postflight functional performance of astronauts and related physiological changes. METHODS Five astronauts with flight durations of 12 to 16 days participated in this study. Performance measurements were obtained in 2 preflight sessions, on landing day, and 1, 6, and 30 days after landing. The WOFEC test consisted of walking with the feet placed heel to toe in tandem, arms folded across the chest and eyes closed, for 10 steps. A trial was initiated after the eyes were closed and the front foot was aligned with the rear foot. The performance metric was the average percentage of correct steps completed over 3 trials. A step w...
We are conducting ongoing experiments in which we are performing structural and functional magnet... more We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-dura...
The goal of the Functional Task Test study is to determine the effects of space flight on functio... more The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdis...
Exposure to the microgravity environment during spaceflight missions impacts crewmembers’ sensori... more Exposure to the microgravity environment during spaceflight missions impacts crewmembers’ sensorimotor function. Bock et al. [1] studied the cognitive demands of human sensorimotor performance and dual tasking during long duration missions and concluded that both stress and scarcity of cognitive resources required for sensorimotor adaptation may be responsible for these deficits during spaceflight. Therefore, in consideration of the health and performance of crewmembers inand post-flight, we are conducting this study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. The data presented will focus on the behavioral measures that were collected pre-, inand post-flight including spatial cognition, processing speed, bimanual coordination, functional mobility, computerized dynamic posturography (CDP), and vibrotactile induced vestibular evoked myogenic potential (VEMP).
Long duration spaceflight has been associated with detrimental alterations in human sensorimotor ... more Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and b...
It is known that spaceflight adversely affects human sensorimotor function. With interests in lon... more It is known that spaceflight adversely affects human sensorimotor function. With interests in longer duration deep space missions it is important to understand microgravity dose-response relationships. NASA’s One Year Mission project allows for comparison of the effects of one year in space with those seen in more typical six month missions to the International Space Station. In the Neuromapping project we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroima...
INTRODUCTION: Astronauts returning from space flight universally present with postural ataxia. Th... more INTRODUCTION: Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior plane. Implementation of an interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes has allowed the investigation of postural instability by characterizing dynamic stabilographic sway patterns. METHODS: Six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 3...
INTRODUCTION: Astronauts returning from space flight universally exhibit impaired posture and loc... more INTRODUCTION: Astronauts returning from space flight universally exhibit impaired posture and locomotion. Measurement of this impairment is an evolving process. The walk on the floor line test with the eyes closed (WOFEC) provides a unique procedure for quantifying postflight ataxia. Data from a modified WOFEC were obtained as part of an ongoing NASA interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate astronaut postflight functional performance. METHODS: Seven astronauts (5 short duration with flights of 12-16 days; 2 long duration crewmembers with flights of 6 months) were tested twice before flight, on landing day (short duration only), and 1, 6, and 30 days after flight. The WOFEC consisted of walking for 10 steps (repeated twice) with the feet heel to toe in tandem, arms folded across the chest and the eyes closed. The performance metric (scored by three examiners from video) was the percentage of correct steps completed over the three tr...
Scientific reports, Jan 9, 2017
The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt... more The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and axial body unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6° HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n = 12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging was used to quantify distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreases...
Frontiers in systems neuroscience, 2017
The current study characterizes brain fMRI activation in response to two modes of vestibular stim... more The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: Skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex [saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)], or an ocular muscle response [utricle-mediated ocular VEMP (oVEMP)]. Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered sku...
Frontiers in Systems Neuroscience, 2016
NeuroImage, Jan 13, 2016
Sensorimotor functioning is adaptively altered following long-duration spaceflight. The question ... more Sensorimotor functioning is adaptively altered following long-duration spaceflight. The question of whether microgravity affects other central nervous system functions such as brain network organization and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to an established spaceflight analog on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. These bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Resting state functional magnetic resonance imaging (rs-fMRI) and behavioral data were obtained at seven time points averaging around: 12 and 8days prior to bed rest; 7, 50, and 70days during bed rest; and 8 and 12days after bed rest. To assess potential confounding effects due to scanning interv...
Frontiers in Systems Neuroscience, 2015
1. Dynamic visual acuity (DVA) is reduced in the vertical plane at frequencies of 2 Hz and in the... more 1. Dynamic visual acuity (DVA) is reduced in the vertical plane at frequencies of 2 Hz and in the horizontal plane at frequencies of 0.8 Hz. DVA varies with target location, with acuity optimized for targets in the plane of motion. Perturbations at low frequency motions (0.1-2 Hz) may exacerbate sensorimotor deficits after space flight. 2. Low imperceptible levels of white noise based electrical stimulation of the vestibular system improves balance performance consistent with the stochastic resonance phenomenon in normal healthy control subjects. The amplitude of optimal stimulus for improving balance performance was predominantly in the range of 100-400 μA. 3. An SRVS based device may be fielded, either as a training modality to enhance adaptability or skill acquisition, or as a miniature patch type stimulator that may be worn by astronauts to enhance adaptation following gravitational transitions including people with disabilities due to aging or disease, improving posture and loc...
Experimental Brain Research, 2011
Stochastic resonance (SR) is a phenomenon whereby the response of a non-linear system to a weak p... more Stochastic resonance (SR) is a phenomenon whereby the response of a non-linear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. Stochastic resonance using imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, has been shown to significantly improve ocular stabilization reflexes in response to whole-body tilt; improved balance performance during postural disturbances and optimize covariance between the weak input periodic signals introduced via venous blood pressure receptors and the heart rate responses. In our study, 15 subjects stood on a compliant surface with their eyes closed. They were given low-amplitude binaural bipolar stochastic electrical stimulation of the vestibular organs in two frequency ranges of 1-2 and 0-30 Hz over the amplitude range of 0 to ±700 lA. Subjects were instructed to maintain an upright stance during 43-s trials, which consisted of baseline (zero amplitude) and stimulation (non-zero amplitude) periods. Measures of stability of the head and trunk using inertial motion unit sensors attached to these segments and the whole body using a force plate were measured and quantified in the mediolateral plane. Using a multivariate optimization criterion, our results show that the low levels of vestibular stimulation given to the vestibular organs improved balance performance in normal healthy subjects in the range of 5-26% consistent with the stochastic resonance phenomenon. In our study, 8 of 15 and 10 of 15 subjects were responsive for the 1-2-and 0-30-Hz stimulus signals, respectively. The improvement in balance performance did not differ significantly between the stimulations in the two frequency ranges. The amplitude of optimal stimulus for improving balance performance was predominantly in the range of ±100 to ±400 lA. A device based on SR stimulation of the vestibular system might be useful as either a training modality to enhance adaptability or skill acquisition, or as a miniature patch-type stimulator that may be worn by people with disabilities due to aging or disease to improve posture and locomotion function.
Experimental Brain Research, 2008
The tendency to generate head movements during saccades varies from person to person. Head moveme... more The tendency to generate head movements during saccades varies from person to person. Head movement tendencies can be measured as subjects fixate sequences of illuminated targets, but the extent to which such measures reflect eye-head coupling during more natural behaviors is unknown. We quantified head movement tendencies in 20 normal subjects in a conventional laboratory experiment and in an outdoor setting in which the subjects directed their gaze spontaneously. In the laboratory, head movement tendencies during centrifugal saccades could be described by the eye-only range (EOR), customary ocular motor range (COMR), and the customary head orientation range (CHOR). An analogous EOR, COMR, and CHOR could be extracted from the centrifugal saccades executed in the outdoor setting. An additional six measures were introduced to describe the preferred ranges of eyes-in-head and head-on-torso manifest throughout the outdoor recording, i.e., not limited to the orientations following centrifugal saccades. These 12 measured variables could be distilled by factor analysis to one indoor and six outdoor factors. The factors reflect separable tendencies related to preferred ranges of visual search, head eccentricity, and eye eccentricity. Multiple correlations were found between the indoor and outdoor factors. The results demonstrate that there are multiple types of head movement tendencies, but some of these influence behavior across rather different experimental settings and tasks. Thus behavior in the two settings likely relies on common neural mechanisms, and the laboratory assays of head movement tendencies succeed in probing the mechanisms underlying eye-head coupling during more natural behaviors.
PLOS ONE, 2015
Low-level stochastic vestibular stimulation (SVS) has been associated with improved postural resp... more Low-level stochastic vestibular stimulation (SVS) has been associated with improved postural responses in the medio-lateral (ML) direction, but its effect in improving balance function in both the ML and anterior-posterior (AP) directions has not been studied. In this series of studies, the efficacy of applying low amplitude SVS in 0-30 Hz range between the mastoids in the ML direction on improving cross-planar balance function was investigated. Forty-five (45) subjects stood on a compliant surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in ML, AP and combined APML directions. Results show that binaural bipolar SVS given in the ML direction significantly improved balance performance with the peak of optimal stimulus amplitude predominantly in the range of 100-500 μA for all the three directions, exhibiting stochastic resonance (SR) phenomenon. Objective perceptual and body motion thresholds as estimates of internal noise while subjects sat on a chair with their eyes closed and were given 1 Hz bipolar binaural sinusoidal electrical stimuli were also measured. In general, there was no significant difference between estimates of perceptual and body motion thresholds. The average optimal SVS amplitude that improved balance performance (peak SVS amplitude normalized to perceptual threshold) was estimated to be 46% in ML, 53% in AP, and 50% in APML directions. A miniature patch-type SVS device may be useful to improve balance function in people with disabilities due to aging, Parkinson's disease or in astronauts returning from long-duration space flight.
PLoS ONE, Oct 11, 2018
Spaceflight negatively affects sensorimotor behavior; exercise mitigates some of these effects. H... more Spaceflight negatively affects sensorimotor behavior; exercise mitigates some of these effects. Head down tilt bed rest (HDBR) induces body unloading and fluid shifts, and is often used to investigate spaceflight effects. Here, we examined whether exercise mitigates effects of 70 days HDBR on the brain and if fitness and brain changes with HDBR are related. HDBR subjects were randomized to no-exercise (n = 5) or traditional aerobic and resistance exercise (n = 5). Additionally, a flywheel exercise group was included (n = 8). Exercise protocols for exercise groups were similar in intensity, therefore these groups were pooled in statistical analyses. Pre and post-HDBR MRI (structure and structural/functional connectivity) and physical fitness measures (lower body strength, muscle cross sectional area, VO2 max, body composition) were collected. Voxel-wise permutation analyses were used to test group differences in brain changes, and their associations with fitness changes. Comparisons ...
Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laborat... more Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (<24 hr) recovery process, nor is it possible to accurately assess the full impact of the decrements associated with long duration flight. To overcome these limitations, both the Russian and U.S. sides have implemented testing at landing sit...
Sensorimotor changes such as postural and gait instabilities can affect the functional performanc... more Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface [1]. This technique to improve detection of vestibular signals uses a stimulus delivery system that provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection.
INTRODUCTION Posture and locomotion are among the functions most affected by space flight. Postfl... more INTRODUCTION Posture and locomotion are among the functions most affected by space flight. Postflight ataxia can be quantified easily by using the walk on the floor line test with the eyes closed (WOFEC). Data from a modified WOFEC were obtained as part of an ongoing interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both postflight functional performance of astronauts and related physiological changes. METHODS Five astronauts with flight durations of 12 to 16 days participated in this study. Performance measurements were obtained in 2 preflight sessions, on landing day, and 1, 6, and 30 days after landing. The WOFEC test consisted of walking with the feet placed heel to toe in tandem, arms folded across the chest and eyes closed, for 10 steps. A trial was initiated after the eyes were closed and the front foot was aligned with the rear foot. The performance metric was the average percentage of correct steps completed over 3 trials. A step w...
We are conducting ongoing experiments in which we are performing structural and functional magnet... more We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-dura...
The goal of the Functional Task Test study is to determine the effects of space flight on functio... more The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdis...
Exposure to the microgravity environment during spaceflight missions impacts crewmembers’ sensori... more Exposure to the microgravity environment during spaceflight missions impacts crewmembers’ sensorimotor function. Bock et al. [1] studied the cognitive demands of human sensorimotor performance and dual tasking during long duration missions and concluded that both stress and scarcity of cognitive resources required for sensorimotor adaptation may be responsible for these deficits during spaceflight. Therefore, in consideration of the health and performance of crewmembers inand post-flight, we are conducting this study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. The data presented will focus on the behavioral measures that were collected pre-, inand post-flight including spatial cognition, processing speed, bimanual coordination, functional mobility, computerized dynamic posturography (CDP), and vibrotactile induced vestibular evoked myogenic potential (VEMP).
Long duration spaceflight has been associated with detrimental alterations in human sensorimotor ... more Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and b...
It is known that spaceflight adversely affects human sensorimotor function. With interests in lon... more It is known that spaceflight adversely affects human sensorimotor function. With interests in longer duration deep space missions it is important to understand microgravity dose-response relationships. NASA’s One Year Mission project allows for comparison of the effects of one year in space with those seen in more typical six month missions to the International Space Station. In the Neuromapping project we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroima...
INTRODUCTION: Astronauts returning from space flight universally present with postural ataxia. Th... more INTRODUCTION: Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior plane. Implementation of an interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes has allowed the investigation of postural instability by characterizing dynamic stabilographic sway patterns. METHODS: Six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 3...
INTRODUCTION: Astronauts returning from space flight universally exhibit impaired posture and loc... more INTRODUCTION: Astronauts returning from space flight universally exhibit impaired posture and locomotion. Measurement of this impairment is an evolving process. The walk on the floor line test with the eyes closed (WOFEC) provides a unique procedure for quantifying postflight ataxia. Data from a modified WOFEC were obtained as part of an ongoing NASA interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate astronaut postflight functional performance. METHODS: Seven astronauts (5 short duration with flights of 12-16 days; 2 long duration crewmembers with flights of 6 months) were tested twice before flight, on landing day (short duration only), and 1, 6, and 30 days after flight. The WOFEC consisted of walking for 10 steps (repeated twice) with the feet heel to toe in tandem, arms folded across the chest and the eyes closed. The performance metric (scored by three examiners from video) was the percentage of correct steps completed over the three tr...