Ivan Tubert-brohman - Academia.edu (original) (raw)

Uploads

Papers by Ivan Tubert-brohman

Research paper thumbnail of Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models

Physical Review A, 2008

In this report, we explore the use of a quantum optimization algorithm for obtaining low energy c... more In this report, we explore the use of a quantum optimization algorithm for obtaining low energy conformations of protein models. We discuss mappings between protein models and optimization variables, which are in turn mapped to a system of coupled quantum bits. General strategies are given for constructing Hamiltonians to be used to solve optimization problems of physical/chemical/biological interest via quantum computation by adiabatic evolution. As an example, we implement the Hamiltonian corresponding to the Hydrophobic-Polar (HP) model for protein folding. Furthermore, we present an approach to reduce the resulting Hamiltonian to two-body terms gearing towards an experimental realization.

Research paper thumbnail of Elucidation of Hydrolysis Mechanisms for Fatty Acid Amide Hydrolase and Its Lys142Ala Variant via QM/MM Simulations

Journal of the American Chemical Society, 2006

Fatty acid amide hydrolase (FAAH) is a serine hydrolase that degrades anandamide, an endocannabin... more Fatty acid amide hydrolase (FAAH) is a serine hydrolase that degrades anandamide, an endocannabinoid, and oleamide, a sleep-inducing lipid, and has potential applications as a therapeutic target for neurological disorders. Remarkably, FAAH hydrolyzes amides and esters with similar rates; however, the normal preference for esters reemerges when Lys142 is mutated to alanine. To elucidate the hydrolysis mechanisms and the causes behind this variation of selectivity, mixed quantum and molecular mechanics (QM/MM) calculations were carried out to obtain free-energy profiles for alternative mechanisms for the enzymatic hydrolyses. The methodology features free-energy perturbation calculations in Monte Carlo simulations with PDDG/PM3 as the QM method. For wild-type FAAH, the results support a mechanism, which features proton transfer from Ser217 to Lys142, simultaneous proton transfer from Ser241 to Ser217, and attack of Ser241 on the substrate's carbonyl carbon to yield a tetrahedral intermediate, which subsequently undergoes elimination with simultaneous protonation of the leaving group by a Lys142-Ser217 proton shuttle. For the Lys142Ala mutant, a striking multistep sequence is proposed with simultaneous proton transfer from Ser241 to Ser217, attack of Ser241 on the carbonyl carbon of the substrate, and elimination of the leaving group and its protonation by Ser217. Support comes from the free-energy results, which well reproduce the observation that the Lys142Ala mutation in FAAH decreases the rate of hydrolysis for oleamide significantly more than for methyl oleate.

Research paper thumbnail of Extension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens

Journal of Computational Chemistry, 2004

The new semiempirical methods, PDDG/PM3 and PDDG/MNDO, have been parameterized for halogens.

Research paper thumbnail of Effects of Arg90 Neutralization on the Enzyme-Catalyzed Rearrangement of Chorismate to Prephenate

Journal of Chemical Theory and Computation, 2005

Chorismate mutase (CM) is an enzyme that catalyzes the Claisen rearrangement of chorismate to pre... more Chorismate mutase (CM) is an enzyme that catalyzes the Claisen rearrangement of chorismate to prephenate. In a recent effort to understand the basis for catalysis by CM, Kienhöfer and co-workers (J. Am. Chem. Soc. 2003, 125, 3206-3207) reported results on the mutation of Arg90 in Bacillus subtilis CM (BsCM) to citrulline (Cit), an isosteric but neutral arginine analogue. An ca. 10(4)-fold decrease in kcat or 5.9 kcal/mol increase in the free-energy barrier (ΔG(‡)) for the overall catalysis was observed upon mutation. In this work, attention is turned to determining the key factors that contribute to the reduced catalytic efficiency of Arg90Cit BsCM. Using a combined QM/MM Monte Carlo/Free-Energy Perturbation method, a ΔΔG(‡) value of 3.3 kcal/mol is obtained. The higher free-energy barrier for the mutant is exclusively related to inferior stabilization of the TS, particularly one of its carboxylate groups, by neutral Cit. In addition, the reaction becomes 2.0 kcal/mol more exergonic. As BsCM is limited by product release, this step contributes to the remainder of the 10(4)-fold decrease in the rate constant in going from Arg90 to Cit.

Research paper thumbnail of NO-MNDO:  Reintroduction of the Overlap Matrix into MNDO

Journal of Chemical Theory and Computation, 2006

The effect of reintroducing the overlap matrix into the secular equations for an NDDO (neglect of... more The effect of reintroducing the overlap matrix into the secular equations for an NDDO (neglect of diatomic differential overlap)-based semiempirical molecular orbital method has been investigated. The modification is expected to improve the description of interactions between electron pairs. The idea has been tested by implementation and evaluation of a nonorthogonal version of the MNDO method (NO-MNDO) with parametrization for hydrogen, carbon, nitrogen, and oxygen. Overall, the accuracy of NO-MNDO for heats of formation is nearly identical to that for the more highly parametrized AM1 method. The mean absolute error (MAE) for heats of formation of a comprehensive set of 622 neutral, closed-shell molecules is reduced from 8.4 kcal/mol with MNDO to 6.8 kcal/mol with NO-MNDO. In addition, the performance for conformational equilibria and torsional barriers is significantly improved with NO-MNDO, presumably owing to the improved description of closed-shell interactions. For molecular geometries, the usual training and test sets have been expanded through use of MP2/6-31G(d) results for consistent comparisons. The performance of NO-MNDO for bond lengths, bond angles, and dihedral angles remains good with MAEs of 0.017 Å, 2.5°, and 4.5°. Additionally, NO-MNDO corrects severe errors by MNDO for R(•) + H-R' hydrogen-atom transfers, while testing for activation barriers for nine pericyclic reactions reveals only modest improvement.

Research paper thumbnail of Extension of the PDDG/PM3 Semiempirical Molecular Orbital Method to Sulfur, Silicon, and Phosphorus

Journal of Chemical Theory and Computation, 2005

The PDDG/PM3 semiempirical molecular orbital method has been parameterized for molecules, ions, a... more The PDDG/PM3 semiempirical molecular orbital method has been parameterized for molecules, ions, and complexes containing sulfur; the mean absolute error (MAE) for heats of formation, ΔH f , of 6.4 kcal/mol is 35 − 40 % smaller than for PM3, AM1, and MNDO/d. For completeness, parameterization was also carried out for silicon and phosphorous. For 144 silicon-containing molecules, the ΔH f MAE for PDDG/PM3, PM3, and AM1 is 11 − 12 kcal/mol, while MNDO/d yields 9.4 kcal/mol. For the limited set of 43 phosphorus-containing molecules, MNDO/d also yields the best results followed by PDDG/PM3, AM1, and PM3. The benefits of the d-orbitals in MNDO/d for hypervalent compounds are apparent for silicon and phosphorous, while they are masked in the larger dataset for sulfur by large errors for branched compounds.

Research paper thumbnail of Improved Docking of Polypeptides with Glide

Journal of Chemical Information and Modeling, 2013

Predicting the binding mode of flexible polypeptides to proteins is an important task that falls ... more Predicting the binding mode of flexible polypeptides to proteins is an important task that falls outside the domain of applicability of most small molecule and protein−protein docking tools. Here, we test the small molecule flexible ligand docking program Glide on a set of 19 non-α-helical peptides and systematically improve pose prediction accuracy by enhancing Glide sampling for flexible polypeptides. In addition, scoring of the poses was improved by post-processing with physics-based implicit solvent MM-GBSA calculations. Using the best RMSD among the top 10 scoring poses as a metric, the success rate (RMSD ≤ 2.0 Å for the interface backbone atoms) increased from 21% with default Glide SP settings to 58% with the enhanced peptide sampling and scoring protocol in the case of redocking to the native protein structure. This approaches the accuracy of the recently developed Rosetta FlexPepDock method (63% success for these 19 peptides) while being over 100 times faster. Cross-docking was performed for a subset of cases where an unbound receptor structure was available, and in that case, 40% of peptides were docked successfully. We analyze the results and find that the optimized polypeptide protocol is most accurate for extended peptides of limited size and number of formal charges, defining a domain of applicability for this approach.

Research paper thumbnail of Search for Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase Using Chemical Similarity, Molecular Docking, and MM-GB/SA Scoring

Journal of Chemical Information and Modeling, 2007

A virtual screening protocol has been applied to seek non-nucleoside inhibitors of HIV-1 reverse ... more A virtual screening protocol has been applied to seek non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) and its K103N mutant. First, a chemical similarity search on the Maybridge library was performed using known NNRTIs as reference structures. The top-ranked molecules obtained from this procedure plus 26 known NNRTIs were then docked into the binding sites of the wild-type reverse transcriptase (HIV-RT) and its K103N variant (K103N-RT) using Glide 3.5. The top-ranked 100 compounds from the docking for both proteins were post-scored with a procedure using molecular mechanics and continuum solvation (MM-GB/SA). The validity of the virtual screening protocol was supported by (i) testing of the MM-GB/SA procedure, (ii) agreement between predicted and crystallographic binding poses, (iii) recovery of known potent NNRTIs at the top of both rankings, and (iv) identification of top-scoring library compounds that are close in structure to recently reported NNRTI HTS-hits. However, purchase and assaying of selected top-scoring compounds from the library failed to yield active anti-HIV agents. Nevertheless, the highest-ranked database compound, S10087, was pursued as containing a potentially viable core. Subsequent synthesis and assaying of S10087 analogs proposed by further computational analysis yielded anti-HIV agents with EC 50 values as low as 310 nM. Thus, with the aid of computational tools, it was possible to evolve a false positive into a true active.

Research paper thumbnail of ChemInform Abstract: Search for Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase Using Chemical Similarity, Molecular Docking, and MM-GB/SA Scoring

ChemInform, 2008

ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance t... more ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.

Research paper thumbnail of Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models

Physical Review A, 2008

In this report, we explore the use of a quantum optimization algorithm for obtaining low energy c... more In this report, we explore the use of a quantum optimization algorithm for obtaining low energy conformations of protein models. We discuss mappings between protein models and optimization variables, which are in turn mapped to a system of coupled quantum bits. General strategies are given for constructing Hamiltonians to be used to solve optimization problems of physical/chemical/biological interest via quantum computation by adiabatic evolution. As an example, we implement the Hamiltonian corresponding to the Hydrophobic-Polar (HP) model for protein folding. Furthermore, we present an approach to reduce the resulting Hamiltonian to two-body terms gearing towards an experimental realization.

Research paper thumbnail of Elucidation of Hydrolysis Mechanisms for Fatty Acid Amide Hydrolase and Its Lys142Ala Variant via QM/MM Simulations

Journal of the American Chemical Society, 2006

Fatty acid amide hydrolase (FAAH) is a serine hydrolase that degrades anandamide, an endocannabin... more Fatty acid amide hydrolase (FAAH) is a serine hydrolase that degrades anandamide, an endocannabinoid, and oleamide, a sleep-inducing lipid, and has potential applications as a therapeutic target for neurological disorders. Remarkably, FAAH hydrolyzes amides and esters with similar rates; however, the normal preference for esters reemerges when Lys142 is mutated to alanine. To elucidate the hydrolysis mechanisms and the causes behind this variation of selectivity, mixed quantum and molecular mechanics (QM/MM) calculations were carried out to obtain free-energy profiles for alternative mechanisms for the enzymatic hydrolyses. The methodology features free-energy perturbation calculations in Monte Carlo simulations with PDDG/PM3 as the QM method. For wild-type FAAH, the results support a mechanism, which features proton transfer from Ser217 to Lys142, simultaneous proton transfer from Ser241 to Ser217, and attack of Ser241 on the substrate's carbonyl carbon to yield a tetrahedral intermediate, which subsequently undergoes elimination with simultaneous protonation of the leaving group by a Lys142-Ser217 proton shuttle. For the Lys142Ala mutant, a striking multistep sequence is proposed with simultaneous proton transfer from Ser241 to Ser217, attack of Ser241 on the carbonyl carbon of the substrate, and elimination of the leaving group and its protonation by Ser217. Support comes from the free-energy results, which well reproduce the observation that the Lys142Ala mutation in FAAH decreases the rate of hydrolysis for oleamide significantly more than for methyl oleate.

Research paper thumbnail of Extension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens

Journal of Computational Chemistry, 2004

The new semiempirical methods, PDDG/PM3 and PDDG/MNDO, have been parameterized for halogens.

Research paper thumbnail of Effects of Arg90 Neutralization on the Enzyme-Catalyzed Rearrangement of Chorismate to Prephenate

Journal of Chemical Theory and Computation, 2005

Chorismate mutase (CM) is an enzyme that catalyzes the Claisen rearrangement of chorismate to pre... more Chorismate mutase (CM) is an enzyme that catalyzes the Claisen rearrangement of chorismate to prephenate. In a recent effort to understand the basis for catalysis by CM, Kienhöfer and co-workers (J. Am. Chem. Soc. 2003, 125, 3206-3207) reported results on the mutation of Arg90 in Bacillus subtilis CM (BsCM) to citrulline (Cit), an isosteric but neutral arginine analogue. An ca. 10(4)-fold decrease in kcat or 5.9 kcal/mol increase in the free-energy barrier (ΔG(‡)) for the overall catalysis was observed upon mutation. In this work, attention is turned to determining the key factors that contribute to the reduced catalytic efficiency of Arg90Cit BsCM. Using a combined QM/MM Monte Carlo/Free-Energy Perturbation method, a ΔΔG(‡) value of 3.3 kcal/mol is obtained. The higher free-energy barrier for the mutant is exclusively related to inferior stabilization of the TS, particularly one of its carboxylate groups, by neutral Cit. In addition, the reaction becomes 2.0 kcal/mol more exergonic. As BsCM is limited by product release, this step contributes to the remainder of the 10(4)-fold decrease in the rate constant in going from Arg90 to Cit.

Research paper thumbnail of NO-MNDO:  Reintroduction of the Overlap Matrix into MNDO

Journal of Chemical Theory and Computation, 2006

The effect of reintroducing the overlap matrix into the secular equations for an NDDO (neglect of... more The effect of reintroducing the overlap matrix into the secular equations for an NDDO (neglect of diatomic differential overlap)-based semiempirical molecular orbital method has been investigated. The modification is expected to improve the description of interactions between electron pairs. The idea has been tested by implementation and evaluation of a nonorthogonal version of the MNDO method (NO-MNDO) with parametrization for hydrogen, carbon, nitrogen, and oxygen. Overall, the accuracy of NO-MNDO for heats of formation is nearly identical to that for the more highly parametrized AM1 method. The mean absolute error (MAE) for heats of formation of a comprehensive set of 622 neutral, closed-shell molecules is reduced from 8.4 kcal/mol with MNDO to 6.8 kcal/mol with NO-MNDO. In addition, the performance for conformational equilibria and torsional barriers is significantly improved with NO-MNDO, presumably owing to the improved description of closed-shell interactions. For molecular geometries, the usual training and test sets have been expanded through use of MP2/6-31G(d) results for consistent comparisons. The performance of NO-MNDO for bond lengths, bond angles, and dihedral angles remains good with MAEs of 0.017 Å, 2.5°, and 4.5°. Additionally, NO-MNDO corrects severe errors by MNDO for R(•) + H-R' hydrogen-atom transfers, while testing for activation barriers for nine pericyclic reactions reveals only modest improvement.

Research paper thumbnail of Extension of the PDDG/PM3 Semiempirical Molecular Orbital Method to Sulfur, Silicon, and Phosphorus

Journal of Chemical Theory and Computation, 2005

The PDDG/PM3 semiempirical molecular orbital method has been parameterized for molecules, ions, a... more The PDDG/PM3 semiempirical molecular orbital method has been parameterized for molecules, ions, and complexes containing sulfur; the mean absolute error (MAE) for heats of formation, ΔH f , of 6.4 kcal/mol is 35 − 40 % smaller than for PM3, AM1, and MNDO/d. For completeness, parameterization was also carried out for silicon and phosphorous. For 144 silicon-containing molecules, the ΔH f MAE for PDDG/PM3, PM3, and AM1 is 11 − 12 kcal/mol, while MNDO/d yields 9.4 kcal/mol. For the limited set of 43 phosphorus-containing molecules, MNDO/d also yields the best results followed by PDDG/PM3, AM1, and PM3. The benefits of the d-orbitals in MNDO/d for hypervalent compounds are apparent for silicon and phosphorous, while they are masked in the larger dataset for sulfur by large errors for branched compounds.

Research paper thumbnail of Improved Docking of Polypeptides with Glide

Journal of Chemical Information and Modeling, 2013

Predicting the binding mode of flexible polypeptides to proteins is an important task that falls ... more Predicting the binding mode of flexible polypeptides to proteins is an important task that falls outside the domain of applicability of most small molecule and protein−protein docking tools. Here, we test the small molecule flexible ligand docking program Glide on a set of 19 non-α-helical peptides and systematically improve pose prediction accuracy by enhancing Glide sampling for flexible polypeptides. In addition, scoring of the poses was improved by post-processing with physics-based implicit solvent MM-GBSA calculations. Using the best RMSD among the top 10 scoring poses as a metric, the success rate (RMSD ≤ 2.0 Å for the interface backbone atoms) increased from 21% with default Glide SP settings to 58% with the enhanced peptide sampling and scoring protocol in the case of redocking to the native protein structure. This approaches the accuracy of the recently developed Rosetta FlexPepDock method (63% success for these 19 peptides) while being over 100 times faster. Cross-docking was performed for a subset of cases where an unbound receptor structure was available, and in that case, 40% of peptides were docked successfully. We analyze the results and find that the optimized polypeptide protocol is most accurate for extended peptides of limited size and number of formal charges, defining a domain of applicability for this approach.

Research paper thumbnail of Search for Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase Using Chemical Similarity, Molecular Docking, and MM-GB/SA Scoring

Journal of Chemical Information and Modeling, 2007

A virtual screening protocol has been applied to seek non-nucleoside inhibitors of HIV-1 reverse ... more A virtual screening protocol has been applied to seek non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) and its K103N mutant. First, a chemical similarity search on the Maybridge library was performed using known NNRTIs as reference structures. The top-ranked molecules obtained from this procedure plus 26 known NNRTIs were then docked into the binding sites of the wild-type reverse transcriptase (HIV-RT) and its K103N variant (K103N-RT) using Glide 3.5. The top-ranked 100 compounds from the docking for both proteins were post-scored with a procedure using molecular mechanics and continuum solvation (MM-GB/SA). The validity of the virtual screening protocol was supported by (i) testing of the MM-GB/SA procedure, (ii) agreement between predicted and crystallographic binding poses, (iii) recovery of known potent NNRTIs at the top of both rankings, and (iv) identification of top-scoring library compounds that are close in structure to recently reported NNRTI HTS-hits. However, purchase and assaying of selected top-scoring compounds from the library failed to yield active anti-HIV agents. Nevertheless, the highest-ranked database compound, S10087, was pursued as containing a potentially viable core. Subsequent synthesis and assaying of S10087 analogs proposed by further computational analysis yielded anti-HIV agents with EC 50 values as low as 310 nM. Thus, with the aid of computational tools, it was possible to evolve a false positive into a true active.

Research paper thumbnail of ChemInform Abstract: Search for Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase Using Chemical Similarity, Molecular Docking, and MM-GB/SA Scoring

ChemInform, 2008

ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance t... more ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.