JAVIER LOPEZ SANTIAGO - Profile on Academia.edu (original) (raw)
Papers by JAVIER LOPEZ SANTIAGO
SIAM Review
This is an up-to-date introduction to, and overview of, marginal likelihood computation for model... more This is an up-to-date introduction to, and overview of, marginal likelihood computation for model selection and hypothesis testing. Computing normalizing constants of probability models (or ratio of constants) is a fundamental issue in many applications in statistics, applied mathematics, signal processing and machine learning. This article provides a comprehensive study of the state-of-the-art of the topic. We highlight limitations, benefits, connections and differences among the different techniques. Problems and possible solutions with the use of improper priors are also described. Some of the most relevant methodologies are compared through theoretical comparisons and numerical experiments.
VizieR Online Data Catalog: A high-resolution spectroscopic survey of late-type stars: chromospheric activity, rotation, kinematics, and age
yCat, 2010
2020 28th European Signal Processing Conference (EUSIPCO), 2021
In the Bayesian setting, the marginal likelihood is the key quantity for model selection purposes... more In the Bayesian setting, the marginal likelihood is the key quantity for model selection purposes. Several computational methods have been proposed in the literature for the computation of the marginal likelihood. In this paper, we briefly review different estimators based on MCMC simulations. We also suggest the use of a kernel density estimation procedure, based on a clustering scheme, within some of them. Numerical comparisons are also provided.
UV image processing to detect diffuse clouds
Numerical simulations of jet- interstellar medium interactions
At the rescue of forgotten SNRs with XMM-Newton and Chandra
Monthly Notices of the Royal Astronomical Society, 2021
Model fitting is possibly the most extended problem in science. Classical approaches include the ... more Model fitting is possibly the most extended problem in science. Classical approaches include the use of least-squares fitting procedures and maximum likelihood methods to estimate the value of the parameters in the model. However, in recent years, Bayesian inference tools have gained traction. Usually, Markov chain Monte Carlo (MCMC) methods are applied to inference problems, but they present some disadvantages, particularly when comparing different models fitted to the same data set. Other Bayesian methods can deal with this issue in a natural and effective way. We have implemented an importance sampling (IS) algorithm adapted to Bayesian inference problems in which the power of the noise in the observations is not known a priori. The main advantage of IS is that the model evidence can be derived directly from the so-called importance weights – while MCMC methods demand considerable postprocessing. The use of our adaptive target adaptive importance sampling (ATAIS) method is shown ...
Mathematics, 2021
We propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the ... more We propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the inference of the variables of interest and the power of the data noise are carried out using distinct (but interacting) methods. More specifically, we consider a Bayesian analysis for the variables of interest (i.e., the parameters of the model to invert), whereas we employ a maximum likelihood approach for the estimation of the noise power. The whole technique is implemented by means of an iterative procedure with alternating sampling and optimization steps. Moreover, the noise power is also used as a tempered parameter for the posterior distribution of the the variables of interest. Therefore, a sequence of tempered posterior densities is generated, where the tempered parameter is automatically selected according to the current estimate of the noise power. A complete Bayesian study over the model parameters and the scale parameter can also be performed. Numerical experiments show the b...
The Astronomical Journal, 2020
Current radial velocity data from specialized instruments contain a large amount of information t... more Current radial velocity data from specialized instruments contain a large amount of information that may pass unnoticed if their analysis is not accurate. The joint use of Bayesian inference tools and frequency analysis has been shown effective to reveal exoplanets but they have been used less frequently to investigate stellar activity. We intend to use radial velocity data of the exoplanet host star GJ 3512 to investigate its magnetic activity. Our study includes the analysis of the photometric data available. The main objectives of our work are to constrain the orbital parameters of the exoplanets in the system, to determine the current level of activity of the star and to derive an activity cycle length for it. An adaptive importance sampling method was used to determine the parameters of the exoplanets orbit. Generalized Lomb-Scargle periodograms were constructed with both radial velocity curve and photometric data. A careful analysis of the harmonic frequencies was conducted in each periodogram. Our fit to multiple Keplerian orbits constrained the orbital parameters of two giant gas planets orbiting the star GJ 3512. The host star showed an increase of its magnetic activity during the last observing campaign. The accurate fit of the radial velocity curve data to the multi-Keplerian orbit permitted to reveal the star rotation in the residuals of the best fit and estimate an activity cycle length of ∼ 14 years.
The Astronomical Journal, 2018
K2-18 is a nearby M2.5 dwarf, located at 34 pc and hosting a transiting planet that was first dis... more K2-18 is a nearby M2.5 dwarf, located at 34 pc and hosting a transiting planet that was first discovered by the K2 mission and later confirmed with Spitzer Space Telescope observations. With a radius of ∼2 R ⊕ and an orbital period of ∼33 days, the planet lies in the temperate zone of its host star and receives stellar irradiation similar to that of Earth. Here we perform radial velocity follow-up observations with the visual channel of CARMENES with the goal of determining the mass and density of the planet. We measure a planetary semi-amplitude of K b ∼3.5 m s 1 and a mass of M b ∼9 M ⊕ , yielding a bulk density around r~-4 g cm b 3. This indicates a low-mass planet with a composition consistent with a solid core and a volatile-rich envelope. A signal at 9 days was recently reported using radial velocity measurements taken with the HARPS spectrograph. This was interpreted as being due to a second planet. We see a weaker, time-and wavelength-dependent signal in the CARMENES data set and thus favor stellar activity for its origin. K2-18 b joins the growing group of low-mass planets detected in the temperate zone of M dwarfs. The brightness of the host star in the near-infrared makes the system a good target for detailed atmospheric studies with the James Webb Space Telescope.
Astronomy & Astrophysics, 2017
Investigating the physical mechanisms driving the dynamical evolution of young star clusters is f... more Investigating the physical mechanisms driving the dynamical evolution of young star clusters is fundamental to our understanding of the star formation process and the properties of the Galactic field stars. The young (∼2 Myr) and partially embedded cluster Chamaeleon I is one of the closest laboratories for the study of the early stages of star cluster dynamics in a low-density environment. The aim of this work is to study the structural and kinematical properties of this cluster combining parameters from the high-resolution spectroscopic observations of the Gaia-ESO Survey with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion (σ stars = 1.14 ± 0.35 km s −1) of the stellar population and the dispersion of the pre-stellar cores (∼0.3 km s −1) derived from submillimeter observations. The origin of this discrepancy, which has been observed in other young star clusters, is not clear. It has been suggested that it may be due to either the effect of the magnetic field on the protostars and the filaments or to the dynamical evolution of stars driven by two-body interactions. Furthermore, the analysis of the kinematic properties of the stellar population puts in evidence a significant velocity shift (∼1 km s −1) between the two subclusters located around the north and south main clouds of the cluster. This result further supports a scenario where clusters form from the evolution of multiple substructures rather than from a monolithic collapse. Using three independent spectroscopic indicators (the gravity indicator γ, the equivalent width of the Li line at 6708 Å, and the Hα 10% width), we performed a new membership selection. We found six new cluster members all located in the outer region of the cluster, proving that Chamaeleon I is probably more extended than previously thought. Starting from the positions and masses of the cluster members, we derived the level of substructure Q, the surface density Σ, and the level of mass segregation Λ MSR of the cluster. The comparison between these structural properties and the results of N-body simulations suggests that the cluster formed in a low-density environment, in virial equilibrium or a supervirial state, and highly substructured.
Astronomy & Astrophysics, 2016
Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasm... more Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims. We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods. We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results. Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations (∼40−60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock.
Monthly Notices of the Royal Astronomical Society, 2015
The Taurus-Auriga molecular complex (TMC) is the main laboratory for the study of low-mass star f... more The Taurus-Auriga molecular complex (TMC) is the main laboratory for the study of low-mass star formation. The density and properties of interstellar dust are expected to vary across the TMC. These variations trace important processes such as dust nucleation or the magnetic field coupling with the cloud. In this paper, we show how the combination of near ultraviolet (NUV) and infrared (IR) photometry can be used to derive the strength of the 2175 Å bump and thus any enhancement in the abundance of small dust grains and polycyclic aromatic hydrocarbons in the dust grains size distribution. This technique is applied to the envelope of the TMC, mapped by the GALEXAll Sky Survey (AIS). Ultraviolet and IR photometric data have been retrieved from the GALEX-AIS and the 2MASS catalogues. NUV and K-band star counts have been used to identify the areas in the cloud envelope where the 2175 Å bump is weaker than in the diffuse interstellar medium namely, the low column density extensions of L1495, L1498 and L1524 in Taurus, L1545, L1548, L1519, L1513 in Auriga and L1482-83 in the California region. This finding agrees with previous results on dust evolution derived from Spitzer data and suggests that dust grains begin to decouple from the environmental Galactic magnetic field already in the envelope.
Study of the X-ray Emission of Stars with Hot Jupiters
VizieR Online Data Catalog: A catalogue of cross-matched radio/infrared/X-ray sources (Combi+, 2011)
Astronomy & Astrophysics, 2014
Aims. We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target ... more Aims. We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potentially useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose. Methods. We devised automated DIB-fitting methods appropriate for cool star spectra and multiple IS components. The data were fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. The initial number of DIB components and their radial velocity were guided by HI 21 cm emission spectra, or, when available in the spectral range, IS neutral sodium absorption lines. For NaI, radial velocities of NaI lines and DIBs were maintained linked during a global simultaneous fit. In parallel, stellar distances and extinctions were estimated self-consistently by means of a 2D Bayesian method from spectroscopically-derived stellar parameters and photometric data. Results. We have analyzed Gaia-ESO Survey (GES) spectra of 225 stars that probe between ∼2 and 10 kpc long LOS in five different regions of the Milky Way. The targets are the two CoRoT fields, two open clusters (NGC 4815 and γ Vel), and the Galactic bulge. Two OGLE fields toward the bulge observed before the GES are also included (205 target stars). Depending on the observed spectral intervals, we extracted one or more of the following DIBs: λλ 6283.8, 6613.6, and 8620.4. For each field, we compared the DIB strengths with the Bayesian distances and extinctions, and the DIB Doppler velocities with the HI emission spectra. Conclusions. For all fields, the DIB strength and the target extinction are well correlated. For targets that are widely distributed in distance, marked steps in DIBs and extinction radial distance profiles match each other and broadly correspond to the expected locations of spiral arms. For all fields, the DIB velocity structure agrees with HI emission spectra, and all detected DIBs correspond to strong NaI lines. This illustrates how DIBs can be used to locate the Galactic interstellar gas and to study its kinematics at the kpc scale, as illustrated by Local and Perseus Arm DIBs that differ by > ∼ 30 km s −1 , in agreement with HI emission spectra. On the other hand, if most targets are located beyond the main absorber, DIBs can trace the differential reddening within the field.
Astrophysics and Space Science, 2014
The growth of luminous structures and the building blocks of life in the Universe began as primor... more The growth of luminous structures and the building blocks of life in the Universe began as primordial gas was processed in stars and mixed at galactic scales. The mechanisms responsible for this development are not well-understood and have changed over the intervening 13 billion years. To follow the evolution of matter over cosmic time, it is necessary to study the strongest (resonance) transitions of the most abundant species in the Universe. Most of them are in the ultraviolet (UV; 950 Å-3000 Å) spectral range that is unobservable from the ground. A versatile space observatory with UV sensitivity a factor of 50-100 greater than existing facilities will revolutionize our understanding of the Universe. Habitable planets grow in protostellar discs under ultraviolet irradiation, a by-product of the stardisk interaction that drives the physical and chemical evolution of discs and young planetary systems. The electronic transitions of the most abundant molecules are pumped by this UV field, providing unique diagnostics of the planet-forming environment that cannot be accessed from the ground. Earth's atmosphere is in constant interaction with the interplanetary medium and the solar UV radiation field. A 50-100 times improvement in sensitivity would enable the observation of the key atmospheric ingredients of Earth-like exoplanets (carbon, oxygen, ozone), provide crucial input for models of biologically active worlds outside the solar system, and provide the phenomenological baseline to understand the Earth atmosphere in context. In this white paper, we outline the key science that such a facility would make possible and outline the instrumentation to be implemented.
JFAC acknowledges support from CONICET (Argentina) and grant from the Ministry of Education and S... more JFAC acknowledges support from CONICET (Argentina) and grant from the Ministry of Education and Science of Spain and ESA XMMNewton. The The most most distant cluster of galaxies ever detected distant cluster of galaxies ever detected ? ?
EAS Publications Series, 2005
on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003... more on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003), including guided tours through the observatory facilities, solar observations, and several talks. Moreover the current telescopes, instruments and tools of the UCM Observatory have allowed us to organize other communicating activities such as the live observation, together with its internet broadcast, of total lunar eclipses and other exceptional astronomical events as the Venus transit that took place in 8 June 2004.
Spectroscopic Monitoring with High Temporal Resolution of the Flare Star AD Leo
Highlights of Spanish Astrophysics III, 2003
... HIGH TEMPORAL RESOLUTION OF THE FLARE STAR AD Leo I. CRESPO-CHACON1, D. MONTES1, J. LOPEZ-SAN... more ... HIGH TEMPORAL RESOLUTION OF THE FLARE STAR AD Leo I. CRESPO-CHACON1, D. MONTES1, J. LOPEZ-SANTIAGO1 MJ FERNANDEZ-FIGUEROA1, D ... galaxies up to redshifts z≈ 2. 5 for subsequent optical and NIR spectroscopic studies with EMIR and OSIRIS on the ...
SIAM Review
This is an up-to-date introduction to, and overview of, marginal likelihood computation for model... more This is an up-to-date introduction to, and overview of, marginal likelihood computation for model selection and hypothesis testing. Computing normalizing constants of probability models (or ratio of constants) is a fundamental issue in many applications in statistics, applied mathematics, signal processing and machine learning. This article provides a comprehensive study of the state-of-the-art of the topic. We highlight limitations, benefits, connections and differences among the different techniques. Problems and possible solutions with the use of improper priors are also described. Some of the most relevant methodologies are compared through theoretical comparisons and numerical experiments.
VizieR Online Data Catalog: A high-resolution spectroscopic survey of late-type stars: chromospheric activity, rotation, kinematics, and age
yCat, 2010
2020 28th European Signal Processing Conference (EUSIPCO), 2021
In the Bayesian setting, the marginal likelihood is the key quantity for model selection purposes... more In the Bayesian setting, the marginal likelihood is the key quantity for model selection purposes. Several computational methods have been proposed in the literature for the computation of the marginal likelihood. In this paper, we briefly review different estimators based on MCMC simulations. We also suggest the use of a kernel density estimation procedure, based on a clustering scheme, within some of them. Numerical comparisons are also provided.
UV image processing to detect diffuse clouds
Numerical simulations of jet- interstellar medium interactions
At the rescue of forgotten SNRs with XMM-Newton and Chandra
Monthly Notices of the Royal Astronomical Society, 2021
Model fitting is possibly the most extended problem in science. Classical approaches include the ... more Model fitting is possibly the most extended problem in science. Classical approaches include the use of least-squares fitting procedures and maximum likelihood methods to estimate the value of the parameters in the model. However, in recent years, Bayesian inference tools have gained traction. Usually, Markov chain Monte Carlo (MCMC) methods are applied to inference problems, but they present some disadvantages, particularly when comparing different models fitted to the same data set. Other Bayesian methods can deal with this issue in a natural and effective way. We have implemented an importance sampling (IS) algorithm adapted to Bayesian inference problems in which the power of the noise in the observations is not known a priori. The main advantage of IS is that the model evidence can be derived directly from the so-called importance weights – while MCMC methods demand considerable postprocessing. The use of our adaptive target adaptive importance sampling (ATAIS) method is shown ...
Mathematics, 2021
We propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the ... more We propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the inference of the variables of interest and the power of the data noise are carried out using distinct (but interacting) methods. More specifically, we consider a Bayesian analysis for the variables of interest (i.e., the parameters of the model to invert), whereas we employ a maximum likelihood approach for the estimation of the noise power. The whole technique is implemented by means of an iterative procedure with alternating sampling and optimization steps. Moreover, the noise power is also used as a tempered parameter for the posterior distribution of the the variables of interest. Therefore, a sequence of tempered posterior densities is generated, where the tempered parameter is automatically selected according to the current estimate of the noise power. A complete Bayesian study over the model parameters and the scale parameter can also be performed. Numerical experiments show the b...
The Astronomical Journal, 2020
Current radial velocity data from specialized instruments contain a large amount of information t... more Current radial velocity data from specialized instruments contain a large amount of information that may pass unnoticed if their analysis is not accurate. The joint use of Bayesian inference tools and frequency analysis has been shown effective to reveal exoplanets but they have been used less frequently to investigate stellar activity. We intend to use radial velocity data of the exoplanet host star GJ 3512 to investigate its magnetic activity. Our study includes the analysis of the photometric data available. The main objectives of our work are to constrain the orbital parameters of the exoplanets in the system, to determine the current level of activity of the star and to derive an activity cycle length for it. An adaptive importance sampling method was used to determine the parameters of the exoplanets orbit. Generalized Lomb-Scargle periodograms were constructed with both radial velocity curve and photometric data. A careful analysis of the harmonic frequencies was conducted in each periodogram. Our fit to multiple Keplerian orbits constrained the orbital parameters of two giant gas planets orbiting the star GJ 3512. The host star showed an increase of its magnetic activity during the last observing campaign. The accurate fit of the radial velocity curve data to the multi-Keplerian orbit permitted to reveal the star rotation in the residuals of the best fit and estimate an activity cycle length of ∼ 14 years.
The Astronomical Journal, 2018
K2-18 is a nearby M2.5 dwarf, located at 34 pc and hosting a transiting planet that was first dis... more K2-18 is a nearby M2.5 dwarf, located at 34 pc and hosting a transiting planet that was first discovered by the K2 mission and later confirmed with Spitzer Space Telescope observations. With a radius of ∼2 R ⊕ and an orbital period of ∼33 days, the planet lies in the temperate zone of its host star and receives stellar irradiation similar to that of Earth. Here we perform radial velocity follow-up observations with the visual channel of CARMENES with the goal of determining the mass and density of the planet. We measure a planetary semi-amplitude of K b ∼3.5 m s 1 and a mass of M b ∼9 M ⊕ , yielding a bulk density around r~-4 g cm b 3. This indicates a low-mass planet with a composition consistent with a solid core and a volatile-rich envelope. A signal at 9 days was recently reported using radial velocity measurements taken with the HARPS spectrograph. This was interpreted as being due to a second planet. We see a weaker, time-and wavelength-dependent signal in the CARMENES data set and thus favor stellar activity for its origin. K2-18 b joins the growing group of low-mass planets detected in the temperate zone of M dwarfs. The brightness of the host star in the near-infrared makes the system a good target for detailed atmospheric studies with the James Webb Space Telescope.
Astronomy & Astrophysics, 2017
Investigating the physical mechanisms driving the dynamical evolution of young star clusters is f... more Investigating the physical mechanisms driving the dynamical evolution of young star clusters is fundamental to our understanding of the star formation process and the properties of the Galactic field stars. The young (∼2 Myr) and partially embedded cluster Chamaeleon I is one of the closest laboratories for the study of the early stages of star cluster dynamics in a low-density environment. The aim of this work is to study the structural and kinematical properties of this cluster combining parameters from the high-resolution spectroscopic observations of the Gaia-ESO Survey with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion (σ stars = 1.14 ± 0.35 km s −1) of the stellar population and the dispersion of the pre-stellar cores (∼0.3 km s −1) derived from submillimeter observations. The origin of this discrepancy, which has been observed in other young star clusters, is not clear. It has been suggested that it may be due to either the effect of the magnetic field on the protostars and the filaments or to the dynamical evolution of stars driven by two-body interactions. Furthermore, the analysis of the kinematic properties of the stellar population puts in evidence a significant velocity shift (∼1 km s −1) between the two subclusters located around the north and south main clouds of the cluster. This result further supports a scenario where clusters form from the evolution of multiple substructures rather than from a monolithic collapse. Using three independent spectroscopic indicators (the gravity indicator γ, the equivalent width of the Li line at 6708 Å, and the Hα 10% width), we performed a new membership selection. We found six new cluster members all located in the outer region of the cluster, proving that Chamaeleon I is probably more extended than previously thought. Starting from the positions and masses of the cluster members, we derived the level of substructure Q, the surface density Σ, and the level of mass segregation Λ MSR of the cluster. The comparison between these structural properties and the results of N-body simulations suggests that the cluster formed in a low-density environment, in virial equilibrium or a supervirial state, and highly substructured.
Astronomy & Astrophysics, 2016
Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasm... more Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims. We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods. We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results. Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations (∼40−60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock.
Monthly Notices of the Royal Astronomical Society, 2015
The Taurus-Auriga molecular complex (TMC) is the main laboratory for the study of low-mass star f... more The Taurus-Auriga molecular complex (TMC) is the main laboratory for the study of low-mass star formation. The density and properties of interstellar dust are expected to vary across the TMC. These variations trace important processes such as dust nucleation or the magnetic field coupling with the cloud. In this paper, we show how the combination of near ultraviolet (NUV) and infrared (IR) photometry can be used to derive the strength of the 2175 Å bump and thus any enhancement in the abundance of small dust grains and polycyclic aromatic hydrocarbons in the dust grains size distribution. This technique is applied to the envelope of the TMC, mapped by the GALEXAll Sky Survey (AIS). Ultraviolet and IR photometric data have been retrieved from the GALEX-AIS and the 2MASS catalogues. NUV and K-band star counts have been used to identify the areas in the cloud envelope where the 2175 Å bump is weaker than in the diffuse interstellar medium namely, the low column density extensions of L1495, L1498 and L1524 in Taurus, L1545, L1548, L1519, L1513 in Auriga and L1482-83 in the California region. This finding agrees with previous results on dust evolution derived from Spitzer data and suggests that dust grains begin to decouple from the environmental Galactic magnetic field already in the envelope.
Study of the X-ray Emission of Stars with Hot Jupiters
VizieR Online Data Catalog: A catalogue of cross-matched radio/infrared/X-ray sources (Combi+, 2011)
Astronomy & Astrophysics, 2014
Aims. We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target ... more Aims. We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potentially useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose. Methods. We devised automated DIB-fitting methods appropriate for cool star spectra and multiple IS components. The data were fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. The initial number of DIB components and their radial velocity were guided by HI 21 cm emission spectra, or, when available in the spectral range, IS neutral sodium absorption lines. For NaI, radial velocities of NaI lines and DIBs were maintained linked during a global simultaneous fit. In parallel, stellar distances and extinctions were estimated self-consistently by means of a 2D Bayesian method from spectroscopically-derived stellar parameters and photometric data. Results. We have analyzed Gaia-ESO Survey (GES) spectra of 225 stars that probe between ∼2 and 10 kpc long LOS in five different regions of the Milky Way. The targets are the two CoRoT fields, two open clusters (NGC 4815 and γ Vel), and the Galactic bulge. Two OGLE fields toward the bulge observed before the GES are also included (205 target stars). Depending on the observed spectral intervals, we extracted one or more of the following DIBs: λλ 6283.8, 6613.6, and 8620.4. For each field, we compared the DIB strengths with the Bayesian distances and extinctions, and the DIB Doppler velocities with the HI emission spectra. Conclusions. For all fields, the DIB strength and the target extinction are well correlated. For targets that are widely distributed in distance, marked steps in DIBs and extinction radial distance profiles match each other and broadly correspond to the expected locations of spiral arms. For all fields, the DIB velocity structure agrees with HI emission spectra, and all detected DIBs correspond to strong NaI lines. This illustrates how DIBs can be used to locate the Galactic interstellar gas and to study its kinematics at the kpc scale, as illustrated by Local and Perseus Arm DIBs that differ by > ∼ 30 km s −1 , in agreement with HI emission spectra. On the other hand, if most targets are located beyond the main absorber, DIBs can trace the differential reddening within the field.
Astrophysics and Space Science, 2014
The growth of luminous structures and the building blocks of life in the Universe began as primor... more The growth of luminous structures and the building blocks of life in the Universe began as primordial gas was processed in stars and mixed at galactic scales. The mechanisms responsible for this development are not well-understood and have changed over the intervening 13 billion years. To follow the evolution of matter over cosmic time, it is necessary to study the strongest (resonance) transitions of the most abundant species in the Universe. Most of them are in the ultraviolet (UV; 950 Å-3000 Å) spectral range that is unobservable from the ground. A versatile space observatory with UV sensitivity a factor of 50-100 greater than existing facilities will revolutionize our understanding of the Universe. Habitable planets grow in protostellar discs under ultraviolet irradiation, a by-product of the stardisk interaction that drives the physical and chemical evolution of discs and young planetary systems. The electronic transitions of the most abundant molecules are pumped by this UV field, providing unique diagnostics of the planet-forming environment that cannot be accessed from the ground. Earth's atmosphere is in constant interaction with the interplanetary medium and the solar UV radiation field. A 50-100 times improvement in sensitivity would enable the observation of the key atmospheric ingredients of Earth-like exoplanets (carbon, oxygen, ozone), provide crucial input for models of biologically active worlds outside the solar system, and provide the phenomenological baseline to understand the Earth atmosphere in context. In this white paper, we outline the key science that such a facility would make possible and outline the instrumentation to be implemented.
JFAC acknowledges support from CONICET (Argentina) and grant from the Ministry of Education and S... more JFAC acknowledges support from CONICET (Argentina) and grant from the Ministry of Education and Science of Spain and ESA XMMNewton. The The most most distant cluster of galaxies ever detected distant cluster of galaxies ever detected ? ?
EAS Publications Series, 2005
on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003... more on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003), including guided tours through the observatory facilities, solar observations, and several talks. Moreover the current telescopes, instruments and tools of the UCM Observatory have allowed us to organize other communicating activities such as the live observation, together with its internet broadcast, of total lunar eclipses and other exceptional astronomical events as the Venus transit that took place in 8 June 2004.
Spectroscopic Monitoring with High Temporal Resolution of the Flare Star AD Leo
Highlights of Spanish Astrophysics III, 2003
... HIGH TEMPORAL RESOLUTION OF THE FLARE STAR AD Leo I. CRESPO-CHACON1, D. MONTES1, J. LOPEZ-SAN... more ... HIGH TEMPORAL RESOLUTION OF THE FLARE STAR AD Leo I. CRESPO-CHACON1, D. MONTES1, J. LOPEZ-SANTIAGO1 MJ FERNANDEZ-FIGUEROA1, D ... galaxies up to redshifts z≈ 2. 5 for subsequent optical and NIR spectroscopic studies with EMIR and OSIRIS on the ...