J. Herlein - Academia.edu (original) (raw)

Papers by J. Herlein

Research paper thumbnail of Effect of Acute and Antecedent Hypoglycemia on Sympathetic Neural Activity and Catecholamine Responsiveness in Normal Rats

Diabetes, 2001

Adrenergic responsiveness to acute hypoglycemia is impaired after prior episodes of hypoglycemia.... more Adrenergic responsiveness to acute hypoglycemia is impaired after prior episodes of hypoglycemia. Although circulating epinephrine responses are blunted, associated alterations in adrenal sympathetic nerve activity (SNA) have not been reported. We examined adrenal nerve traffic in normal conscious rats exposed to acute insulin-induced hypoglycemia compared with insulin with (clamped) euglycemia. We also examined adrenal SNA and catecholamine responses to insulin-induced hypoglycemia in normal conscious rats after two antecedent episodes of hypoglycemia (days ؊2 and ؊1) compared with prior episodes of sham treatment. Acute insulin-induced hypoglycemia increased adrenal sympathetic nerve traffic compared with insulin administration with clamped euglycemia (165 ؎ 12 vs. 118 ؎ 21 spikes/s [P < 0.05]; or to 138 ؎ 8 vs. 114 ؎ 10% of baseline [P < 0.05]). In additional experiments, 2 days of antecedent hypoglycemia (days -2 and -1) compared with sham treatment significantly enhanced baseline adrenal SNA measured immediately before subsequent acute hypoglycemia on day 0 (180 ؎ 11 vs. 130 ؎ 12 spikes/s, respectively; P < 0.005) and during subsequent acute hypoglycemia (229 ؎ 17 vs. 171 ؎ 16 spikes/s; P < 0.05). However, antecedent hypoglycemia resulted in a nonsignificant reduction in hypoglycemic responsiveness of adrenal SNA when expressed as percent increase over baseline (127 ؎ 5% vs. 140 ؎ 14% of baseline). Antecedent hypoglycemia, compared with sham treatment, resulted in diminished epinephrine responsiveness to subsequent hypoglycemia. Norepinephrine responses to hypoglycemia were not significantly altered by antecedent hypoglycemia. In summary, prior hypoglycemia in normal rats increased adrenal sympathetic tone, but impaired epinephrine responsiveness to acute hypoglycemia. Hence, these data raise the intriguing possibility that increased sympathetic tone resulting from antecedent hypoglycemia downregulates subsequent epinephrine responsiveness to hypoglycemia. Alternatively, it is possible that the decrease in epinephrine responsiveness after antecedent hypoglycemia could be the result of reduced adrenal sympathetic nerve responsiveness.

Research paper thumbnail of Mitochondrial Function in Diabetes: Novel Methodology and New Insight

Diabetes, 2013

Interpreting mitochondrial function as affected by comparative physiologic conditions is confound... more Interpreting mitochondrial function as affected by comparative physiologic conditions is confounding because individual functional parameters are interdependent. Here, we studied muscle mitochondrial function in insulin-deficient diabetes using a novel, highly sensitive, and specific method to quantify ATP production simultaneously with reactive oxygen species (ROS) at clamped levels of inner mitochondrial membrane potential (DC), enabling more detailed study. We used a 2-deoxyglucose (2DOG) energy clamp to set DC at fixed levels and to quantify ATP production as 2DOG conversion to 2DOG-phosphate measured by onedimensional 1 H and two-dimensional 1 H/ 13 C heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy. These techniques proved far more sensitive than conventional 31 P nuclear magnetic resonance and allowed high-throughput study of small mitochondrial isolates. Over conditions ranging from state 4 to state 3 respiration, ATP production was lower and ROS per unit of ATP generated was greater in mitochondria isolated from diabetic muscle. Moreover, ROS began to increase at a lower threshold for inner membrane potential in diabetic mitochondria. Further, ATP production in diabetic mitochondria is limited not only by respiration but also by limited capacity to use DC for ATP synthesis. In summary, we describe novel methodology for measuring ATP and provide new mechanistic insight into the dysregulation of ATP production and ROS in mitochondria of insulin-deficient rodents.

Research paper thumbnail of Mitochondrial superoxide and coenzyme Q in insulin-deficient rats: increased electron leak

AJP: Regulatory, Integrative and Comparative Physiology, 2011

Mitochondrial superoxide is important in the pathogeneses of diabetes and its complications. Howe... more Mitochondrial superoxide is important in the pathogeneses of diabetes and its complications. However, there is uncertainty regarding the intrinsic propensity of mitochondria to generate this radical. Studies to date suggest that superoxide production by mitochondria of insulin-sensitive target tissues of insulin-deficient rodents is reduced or unchanged. Moreover, little is known of the role of the Coenzyme Q (CoQ), whose semiquinone form reacts with molecular oxygen to generate superoxide. We measured reactive oxygen species (ROS) production, respiratory parameters, and CoQ content in mitochondria from gastrocnemius muscle of control and streptozotocin (STZ)-diabetic rats. CoQ content did not differ between mitochondria isolated from vehicle- or STZ-treated animals. CoQ also was unaffected by weight loss in the absence of diabetes (induced by caloric restriction). Under state 4 or state 3 conditions, both respiration and ROS release were reduced in diabetic mitochondria fueled with succinate, glutamate plus malate, or with all three substrates (continuous TCA cycle). However, H(2)O(2) and directly measured superoxide production were substantially increased in gastrocnemius mitochondria of diabetic rats when expressed per unit oxygen consumed. On the basis of substrate and inhibitor effects, the mechanism involved multiple electron transport sites. More limited results using heart mitochondria were similar. ROS per unit respiration was greater in muscle mitochondria from diabetic compared with control rats during state 3, as well as state 4, while the reduction in ROS per unit respiration on transition to state 3 was less for diabetic mitochondria. In summary, ROS production is, in fact, increased in mitochondria from insulin-deficient muscle when considered relative to electron transport. This is evident on multiple energy substrates and in different respiratory states. CoQ is not reduced in diabetic mitochondria or with weight loss due to food restriction. The implications of these findings are discussed.

Research paper thumbnail of Differential activation of Th1 and Th2 CD4+ cells by murine brain microvessel endothelial cells and smooth muscle/pericytes

Journal of immunology (Baltimore, Md. : 1950), 1993

CD4+ Th cell infiltration into the brain and the activation by cellular elements of the central n... more CD4+ Th cell infiltration into the brain and the activation by cellular elements of the central nervous system (CNS) are thought to be important steps in the initiation of CNS autoimmune diseases. T cell activation requires Ag-specific stimulation and additional costimulatory signals provided by the APC. Here we describe how murine brain microvessel endothelial (En) cells and smooth muscle/pericytes (SM/P) selectively induce the Ag-specific activation of different Th1 and Th2 CD4+ T cell clones. Th1 and Th2 cell clones were used that were specific for the same peptide Ag in the context of the same class II allotype. SM/P preferentially activated Th1 cell clones, whereas En cells activated Th2 cell clones better, as reflected by cell proliferation and production of IL-2 by SM/P-activated Th1 clones and IL-4 by Th2 clones. There was no difference in the level of expression of CD4, CD2, or LFA-1 molecules between these Th cell clones, and anti-CD4, CD2, LFA-1 or ICAM-1 mAb did not diff...

Research paper thumbnail of TGF-beta 2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo

Journal of immunology (Baltimore, Md. : 1950), 1995

Migration of leukocytes through an in vitro, cell culture model of the blood-brain barrier (BBB) ... more Migration of leukocytes through an in vitro, cell culture model of the blood-brain barrier (BBB) composed of murine brain microvessel endothelial (En) cells and astrocytes, and in vivo in experimental allergic encephalomyelitis (EAE), was investigated. We have recently shown that the adhesiveness of cultured murine brain microvascular endothelial cells for lymphocytes can be increased significantly by pretreatment with IL-1 beta, TNF-alpha, IFN-gamma, and LPS. In the present study, we investigated the role of TGF-beta 2 on the migration of leukocytes through the BBB. In vitro migration was assessed by measuring the percentage of 51Cr-labeled leukocytes migrating through the En/astrocyte monolayers. The basal level of migration was up-regulated significantly by treating the En/astrocyte monolayers with IL-1 alpha, IFN-gamma, TNF-alpha, and LPS. The ability of these cytokines to modulate migration was dose-dependent. Treatment of En cell/astrocyte monolayers with TGF-beta 2 down-regul...

Research paper thumbnail of Pathological and Physiological Properties of Mitochondria BK Channel in Heart

Research paper thumbnail of Early Detection of Subclinical Visual Damage After Blast-Mediated TBI Enables Prevention of Chronic Visual Deficit by Treatment With P7C3-S243

Investigative Ophthalmology & Visual Science, 2014

Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this ... more Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic CNS and visual system damage after TBI at an earlier stage when treatments may be more effective in preventing these sequelae. In addition, treatment with the neuroprotective agent P7C3-S243 after TBI protects from visual system dysfunction after TBI.

Research paper thumbnail of A mitochondrial-targeted coenzyme q analog prevents weight gain and ameliorates hepatic dysfunction in high-fat-fed mice

The Journal of pharmacology and experimental therapeutics, 2014

We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have m... more We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated ...

Research paper thumbnail of Product ion of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes

Journal of Neuroimmunology, 1993

Murine brain microvessel endothelial cells and smooth muscle/pericytes (SM/P) cells were cultured... more Murine brain microvessel endothelial cells and smooth muscle/pericytes (SM/P) cells were cultured from newborn BALB/c (normal strain) and SJL/j (autoimmune-prone strain) mice. These cells were evaluated for their ability to produce interleukin (IL)-I and IL-6 cytokines. The expression of mRNA for IL-I and IL-6 was shown in highly purified BALB/c endothelial cells and SM/P cells using polymerase chain reaction with specific primers for IL-la, IL-1/3 and IL-6. IL-6 but not IL-1 mRNA was detected in unstimulated SJL/j brain microvessel cells. The presence of IL-1 and IL-6 mRNA in the BALB/c brain microvessel endothelial cells and SM/P was confirmed by in situ hybridization. By D10.G4.1 assay, unstimulated BALB/c endothelial cells were shown to produce active IL-1 to a higher degree than SM/P. By B9 bioassay, a low amount of active IL-6 was detected in the supernatant of endothelial cells and SM/P. The production of IL-1 and IL-6 in the bioassays was upregulated by lipopolysaccharide (LPS) activation of the cells in a time-and dose-dependent way. IL-6 production was also shown to be upregulated by IL-1/3 activation of the cells. Brain microvessel endothelial cells of SJL/j origin released equivalent amounts of IL-6 compared to endothelial cells of BALB/c origin. However, the production of IL-6 was markedly higher in SM/P of SJL/j origin than in those of BALB/c origin. These observations, together with our previous data showing that brain microvessel SM/P cells produce GM-CSF, emphasize the possibility for active participation of brain microvasculature SM/P as well as endothelium in inflammatory reactions of the central nervous system.

Research paper thumbnail of Differential activation of CD4+ T cell subsets by brain microvessel endothelial vs. muscle/pericyte cells

Journal of Neuroimmunology, 1993

Research paper thumbnail of Serologic Testing for Celiac Disease in the United States: Results of a Multilaboratory Comparison Study

Clinical and Vaccine Immunology, 2000

The aim of this study was to compare the efficiencies of six reference laboratories for serologic... more The aim of this study was to compare the efficiencies of six reference laboratories for serologic testing for celiac disease. Serum from 20 patients with untreated celiac disease and from 20 controls was thawed, divided, and distributed to each participating laboratory, which performed endomysial antibody tests. Five laboratories also performed antigliadin antibody tests. Sensitivity for endomysial antibody immunoglobulin A (IgA) varied from 57 to 90%. In all laboratories, the specificity for celiac disease was 100%. The sensitivity and specificity for both IgA and IgG antigliadin antibody varied significantly. When results from all three tests were combined in each laboratory, sensitivity was 90 to 100%. The specificity for endomysial antibody was 100% in the laboratories. Sensitivity was less than reported previously. Standardization of these tests is needed in the United States.

Research paper thumbnail of TGF-beta 2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo

The Journal of …, 1995

Migration of leukocytes through an in vitro, cell culture model of the blood-brain barrier (BBB) ... more Migration of leukocytes through an in vitro, cell culture model of the blood-brain barrier (BBB) composed of murine brain microvessel endothelial (En) cells and astrocytes, and in vivo in experimental allergic encephalomyelitis (EAE), was investigated. We have recently shown that the adhesiveness of cultured murine brain microvascular endothelial cells for lymphocytes can be increased significantly by pretreatment with IL-1 beta, TNF-alpha, IFN-gamma, and LPS. In the present study, we investigated the role of TGF-beta 2 on the migration of leukocytes through the BBB. In vitro migration was assessed by measuring the percentage of 51Cr-labeled leukocytes migrating through the En/astrocyte monolayers. The basal level of migration was up-regulated significantly by treating the En/astrocyte monolayers with IL-1 alpha, IFN-gamma, TNF-alpha, and LPS. The ability of these cytokines to modulate migration was dose-dependent. Treatment of En cell/astrocyte monolayers with TGF-beta 2 down-regulated the level of leukocyte migration up-regulated by IL-1 alpha, IFN-gamma, and TNF-alpha in vitro in a dose-dependent manner. TGF-beta 2 also inhibited the migration of lymphocytes into the central nervous system (CNS) in vivo in a dose-dependent fashion. Taken together, these findings strongly suggest that TGF-beta plays an important role in the reduction of lymphocyte infiltration into the CNS in inflammatory demyelinating diseases such as EAE.

Research paper thumbnail of Mitochondrial proton leak in obesity-resistant and obesity-prone mice

AJP: Regulatory, Integrative and Comparative Physiology, 2007

We quantified uncoupling proteins (UCPs) in molar amounts and assessed proton conductance in mito... more We quantified uncoupling proteins (UCPs) in molar amounts and assessed proton conductance in mitochondria isolated from interscapular brown adipose tissue (IBAT) and hindlimb muscle [known from prior work to contain ectopic brown adipose tissue (BAT) interspersed between muscle fibers] of obesity-resistant 129S6/SvEvTac (129) and obesity-prone C57BL/6 (B6) mice under conditions of low (LF) and high-fat (HF) feeding. With usual feeding, IBAT mitochondrial UCP1 content and proton conductance were greater in 129 mice than B6. However, with HF feeding, UCP1 and proton conductance increased more in B6 mice. Moreover, with HF feeding GDP-inhibitable proton conductance, specific for UCP1, equaled that seen in the 129 strain. UCP1 expression was substantial in mitochondria from hindlimb muscle tissue (ectopic BAT) of 129 mice as opposed to B6 but did not increase with HF feeding in either strain. As expected, muscle UCP3 expression increased with HF feeding in both strains but did not differ by strain. Moreover, the proton conductance of mitochondria isolated from hindlimb muscle tissue did not differ by strain or diet. Our data uncover a response to weight gain in obesity-prone (compared to resistant) mice unrecognized in prior studies that examined only UCP1 mRNA. Obesity-prone mice have the capacity to increase both IBAT UCP1 protein and mitochondrial proton conductance as much or more than obesity-resistant mice. But, this is only achieved only at a higher body mass and, therefore, may be adaptive rather than preventative. Neither obesity-prone nor resistant mice respond to HF feeding by expressing more UCP1 in ectopic BAT within muscle tissue.

Research paper thumbnail of Mitochondrial superoxide and coenzyme Q in insulin-deficient rats: increased electron leak

AJP: Regulatory, Integrative and Comparative Physiology, 2011

Mitochondrial superoxide is important in the pathogeneses of diabetes and its complications. Howe... more Mitochondrial superoxide is important in the pathogeneses of diabetes and its complications. However, there is uncertainty regarding the intrinsic propensity of mitochondria to generate this radical. Studies to date suggest that superoxide production by mitochondria of insulin-sensitive target tissues of insulin-deficient rodents is reduced or unchanged. Moreover, little is known of the role of the Coenzyme Q (CoQ), whose semiquinone form reacts with molecular oxygen to generate superoxide. We measured reactive oxygen species (ROS) production, respiratory parameters, and CoQ content in mitochondria from gastrocnemius muscle of control and streptozotocin (STZ)-diabetic rats. CoQ content did not differ between mitochondria isolated from vehicle- or STZ-treated animals. CoQ also was unaffected by weight loss in the absence of diabetes (induced by caloric restriction). Under state 4 or state 3 conditions, both respiration and ROS release were reduced in diabetic mitochondria fueled with succinate, glutamate plus malate, or with all three substrates (continuous TCA cycle). However, H(2)O(2) and directly measured superoxide production were substantially increased in gastrocnemius mitochondria of diabetic rats when expressed per unit oxygen consumed. On the basis of substrate and inhibitor effects, the mechanism involved multiple electron transport sites. More limited results using heart mitochondria were similar. ROS per unit respiration was greater in muscle mitochondria from diabetic compared with control rats during state 3, as well as state 4, while the reduction in ROS per unit respiration on transition to state 3 was less for diabetic mitochondria. In summary, ROS production is, in fact, increased in mitochondria from insulin-deficient muscle when considered relative to electron transport. This is evident on multiple energy substrates and in different respiratory states. CoQ is not reduced in diabetic mitochondria or with weight loss due to food restriction. The implications of these findings are discussed.

Research paper thumbnail of Bioenergetic Effects of Mitochondrial-Targeted Coenzyme Q Analogs in Endothelial Cells

Journal of Pharmacology and Experimental Therapeutics, 2012

Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative dama... more Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative damage induced by a variety of disease states. However, there is a need to understand the bioenergetic effects of these agents and whether or not these effects are related to redox properties, including their known pro-oxidant effects. We examined the bioenergetic effects of two mitochondrial-targeted CoQ analogs in their quinol forms, mitoquinol (MitoQ) and plastoquinonyl-decyl-triphenylphosphonium (SkQ1), in bovine aortic endothelial cells. We used an extracellular oxygen and proton flux analyzer to assess mitochondrial action at the intact-cell level. Both agents, in dose-dependent fashion, reduced the oxygen consumption rate (OCR) directed at ATP turnover (OCR ATP ) (IC 50 values of 189 Ϯ 13 nM for MitoQ and 181 Ϯ 7 for SKQ1; difference not significant) while not affecting or mildly increasing basal oxygen consumption. Both compounds increased extracellular acidifi-cation in the basal state consistent with enhanced glycolysis. Both compounds enhanced mitochondrial superoxide production assessed by using mitochondrial-targeted dihydroethidium, and both increased H 2 O 2 production from mitochondria of cells treated before isolation of the organelles. The manganese superoxide dismutase mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin did not alter or actually enhanced the actions of the targeted CoQ analogs to reduce OCR ATP . In contrast, N-acetylcysteine mitigated this effect of MitoQ and SkQ1. In summary, our data demonstrate the important bioenergetic effects of targeted CoQ analogs. Moreover, these effects are mediated, at least in part, through superoxide production but depend on conversion to H 2 O 2 . These bioenergetic and redox actions need to be considered as these compounds are developed for therapeutic purposes. Article, publication date, and citation information can be found at

Research paper thumbnail of Effect of Acute and Antecedent Hypoglycemia on Sympathetic Neural Activity and Catecholamine Responsiveness in Normal Rats

Diabetes, 2001

Adrenergic responsiveness to acute hypoglycemia is impaired after prior episodes of hypoglycemia.... more Adrenergic responsiveness to acute hypoglycemia is impaired after prior episodes of hypoglycemia. Although circulating epinephrine responses are blunted, associated alterations in adrenal sympathetic nerve activity (SNA) have not been reported. We examined adrenal nerve traffic in normal conscious rats exposed to acute insulin-induced hypoglycemia compared with insulin with (clamped) euglycemia. We also examined adrenal SNA and catecholamine responses to insulin-induced hypoglycemia in normal conscious rats after two antecedent episodes of hypoglycemia (days ؊2 and ؊1) compared with prior episodes of sham treatment. Acute insulin-induced hypoglycemia increased adrenal sympathetic nerve traffic compared with insulin administration with clamped euglycemia (165 ؎ 12 vs. 118 ؎ 21 spikes/s [P < 0.05]; or to 138 ؎ 8 vs. 114 ؎ 10% of baseline [P < 0.05]). In additional experiments, 2 days of antecedent hypoglycemia (days -2 and -1) compared with sham treatment significantly enhanced baseline adrenal SNA measured immediately before subsequent acute hypoglycemia on day 0 (180 ؎ 11 vs. 130 ؎ 12 spikes/s, respectively; P < 0.005) and during subsequent acute hypoglycemia (229 ؎ 17 vs. 171 ؎ 16 spikes/s; P < 0.05). However, antecedent hypoglycemia resulted in a nonsignificant reduction in hypoglycemic responsiveness of adrenal SNA when expressed as percent increase over baseline (127 ؎ 5% vs. 140 ؎ 14% of baseline). Antecedent hypoglycemia, compared with sham treatment, resulted in diminished epinephrine responsiveness to subsequent hypoglycemia. Norepinephrine responses to hypoglycemia were not significantly altered by antecedent hypoglycemia. In summary, prior hypoglycemia in normal rats increased adrenal sympathetic tone, but impaired epinephrine responsiveness to acute hypoglycemia. Hence, these data raise the intriguing possibility that increased sympathetic tone resulting from antecedent hypoglycemia downregulates subsequent epinephrine responsiveness to hypoglycemia. Alternatively, it is possible that the decrease in epinephrine responsiveness after antecedent hypoglycemia could be the result of reduced adrenal sympathetic nerve responsiveness.

Research paper thumbnail of Mitochondrial Function in Diabetes: Novel Methodology and New Insight

Diabetes, 2013

Interpreting mitochondrial function as affected by comparative physiologic conditions is confound... more Interpreting mitochondrial function as affected by comparative physiologic conditions is confounding because individual functional parameters are interdependent. Here, we studied muscle mitochondrial function in insulin-deficient diabetes using a novel, highly sensitive, and specific method to quantify ATP production simultaneously with reactive oxygen species (ROS) at clamped levels of inner mitochondrial membrane potential (DC), enabling more detailed study. We used a 2-deoxyglucose (2DOG) energy clamp to set DC at fixed levels and to quantify ATP production as 2DOG conversion to 2DOG-phosphate measured by onedimensional 1 H and two-dimensional 1 H/ 13 C heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy. These techniques proved far more sensitive than conventional 31 P nuclear magnetic resonance and allowed high-throughput study of small mitochondrial isolates. Over conditions ranging from state 4 to state 3 respiration, ATP production was lower and ROS per unit of ATP generated was greater in mitochondria isolated from diabetic muscle. Moreover, ROS began to increase at a lower threshold for inner membrane potential in diabetic mitochondria. Further, ATP production in diabetic mitochondria is limited not only by respiration but also by limited capacity to use DC for ATP synthesis. In summary, we describe novel methodology for measuring ATP and provide new mechanistic insight into the dysregulation of ATP production and ROS in mitochondria of insulin-deficient rodents.

Research paper thumbnail of Mitochondrial superoxide and coenzyme Q in insulin-deficient rats: increased electron leak

AJP: Regulatory, Integrative and Comparative Physiology, 2011

Mitochondrial superoxide is important in the pathogeneses of diabetes and its complications. Howe... more Mitochondrial superoxide is important in the pathogeneses of diabetes and its complications. However, there is uncertainty regarding the intrinsic propensity of mitochondria to generate this radical. Studies to date suggest that superoxide production by mitochondria of insulin-sensitive target tissues of insulin-deficient rodents is reduced or unchanged. Moreover, little is known of the role of the Coenzyme Q (CoQ), whose semiquinone form reacts with molecular oxygen to generate superoxide. We measured reactive oxygen species (ROS) production, respiratory parameters, and CoQ content in mitochondria from gastrocnemius muscle of control and streptozotocin (STZ)-diabetic rats. CoQ content did not differ between mitochondria isolated from vehicle- or STZ-treated animals. CoQ also was unaffected by weight loss in the absence of diabetes (induced by caloric restriction). Under state 4 or state 3 conditions, both respiration and ROS release were reduced in diabetic mitochondria fueled with succinate, glutamate plus malate, or with all three substrates (continuous TCA cycle). However, H(2)O(2) and directly measured superoxide production were substantially increased in gastrocnemius mitochondria of diabetic rats when expressed per unit oxygen consumed. On the basis of substrate and inhibitor effects, the mechanism involved multiple electron transport sites. More limited results using heart mitochondria were similar. ROS per unit respiration was greater in muscle mitochondria from diabetic compared with control rats during state 3, as well as state 4, while the reduction in ROS per unit respiration on transition to state 3 was less for diabetic mitochondria. In summary, ROS production is, in fact, increased in mitochondria from insulin-deficient muscle when considered relative to electron transport. This is evident on multiple energy substrates and in different respiratory states. CoQ is not reduced in diabetic mitochondria or with weight loss due to food restriction. The implications of these findings are discussed.

Research paper thumbnail of Differential activation of Th1 and Th2 CD4+ cells by murine brain microvessel endothelial cells and smooth muscle/pericytes

Journal of immunology (Baltimore, Md. : 1950), 1993

CD4+ Th cell infiltration into the brain and the activation by cellular elements of the central n... more CD4+ Th cell infiltration into the brain and the activation by cellular elements of the central nervous system (CNS) are thought to be important steps in the initiation of CNS autoimmune diseases. T cell activation requires Ag-specific stimulation and additional costimulatory signals provided by the APC. Here we describe how murine brain microvessel endothelial (En) cells and smooth muscle/pericytes (SM/P) selectively induce the Ag-specific activation of different Th1 and Th2 CD4+ T cell clones. Th1 and Th2 cell clones were used that were specific for the same peptide Ag in the context of the same class II allotype. SM/P preferentially activated Th1 cell clones, whereas En cells activated Th2 cell clones better, as reflected by cell proliferation and production of IL-2 by SM/P-activated Th1 clones and IL-4 by Th2 clones. There was no difference in the level of expression of CD4, CD2, or LFA-1 molecules between these Th cell clones, and anti-CD4, CD2, LFA-1 or ICAM-1 mAb did not diff...

Research paper thumbnail of TGF-beta 2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo

Journal of immunology (Baltimore, Md. : 1950), 1995

Migration of leukocytes through an in vitro, cell culture model of the blood-brain barrier (BBB) ... more Migration of leukocytes through an in vitro, cell culture model of the blood-brain barrier (BBB) composed of murine brain microvessel endothelial (En) cells and astrocytes, and in vivo in experimental allergic encephalomyelitis (EAE), was investigated. We have recently shown that the adhesiveness of cultured murine brain microvascular endothelial cells for lymphocytes can be increased significantly by pretreatment with IL-1 beta, TNF-alpha, IFN-gamma, and LPS. In the present study, we investigated the role of TGF-beta 2 on the migration of leukocytes through the BBB. In vitro migration was assessed by measuring the percentage of 51Cr-labeled leukocytes migrating through the En/astrocyte monolayers. The basal level of migration was up-regulated significantly by treating the En/astrocyte monolayers with IL-1 alpha, IFN-gamma, TNF-alpha, and LPS. The ability of these cytokines to modulate migration was dose-dependent. Treatment of En cell/astrocyte monolayers with TGF-beta 2 down-regul...

Research paper thumbnail of Pathological and Physiological Properties of Mitochondria BK Channel in Heart

Research paper thumbnail of Early Detection of Subclinical Visual Damage After Blast-Mediated TBI Enables Prevention of Chronic Visual Deficit by Treatment With P7C3-S243

Investigative Ophthalmology & Visual Science, 2014

Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this ... more Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic CNS and visual system damage after TBI at an earlier stage when treatments may be more effective in preventing these sequelae. In addition, treatment with the neuroprotective agent P7C3-S243 after TBI protects from visual system dysfunction after TBI.

Research paper thumbnail of A mitochondrial-targeted coenzyme q analog prevents weight gain and ameliorates hepatic dysfunction in high-fat-fed mice

The Journal of pharmacology and experimental therapeutics, 2014

We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have m... more We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated ...

Research paper thumbnail of Product ion of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes

Journal of Neuroimmunology, 1993

Murine brain microvessel endothelial cells and smooth muscle/pericytes (SM/P) cells were cultured... more Murine brain microvessel endothelial cells and smooth muscle/pericytes (SM/P) cells were cultured from newborn BALB/c (normal strain) and SJL/j (autoimmune-prone strain) mice. These cells were evaluated for their ability to produce interleukin (IL)-I and IL-6 cytokines. The expression of mRNA for IL-I and IL-6 was shown in highly purified BALB/c endothelial cells and SM/P cells using polymerase chain reaction with specific primers for IL-la, IL-1/3 and IL-6. IL-6 but not IL-1 mRNA was detected in unstimulated SJL/j brain microvessel cells. The presence of IL-1 and IL-6 mRNA in the BALB/c brain microvessel endothelial cells and SM/P was confirmed by in situ hybridization. By D10.G4.1 assay, unstimulated BALB/c endothelial cells were shown to produce active IL-1 to a higher degree than SM/P. By B9 bioassay, a low amount of active IL-6 was detected in the supernatant of endothelial cells and SM/P. The production of IL-1 and IL-6 in the bioassays was upregulated by lipopolysaccharide (LPS) activation of the cells in a time-and dose-dependent way. IL-6 production was also shown to be upregulated by IL-1/3 activation of the cells. Brain microvessel endothelial cells of SJL/j origin released equivalent amounts of IL-6 compared to endothelial cells of BALB/c origin. However, the production of IL-6 was markedly higher in SM/P of SJL/j origin than in those of BALB/c origin. These observations, together with our previous data showing that brain microvessel SM/P cells produce GM-CSF, emphasize the possibility for active participation of brain microvasculature SM/P as well as endothelium in inflammatory reactions of the central nervous system.

Research paper thumbnail of Differential activation of CD4+ T cell subsets by brain microvessel endothelial vs. muscle/pericyte cells

Journal of Neuroimmunology, 1993

Research paper thumbnail of Serologic Testing for Celiac Disease in the United States: Results of a Multilaboratory Comparison Study

Clinical and Vaccine Immunology, 2000

The aim of this study was to compare the efficiencies of six reference laboratories for serologic... more The aim of this study was to compare the efficiencies of six reference laboratories for serologic testing for celiac disease. Serum from 20 patients with untreated celiac disease and from 20 controls was thawed, divided, and distributed to each participating laboratory, which performed endomysial antibody tests. Five laboratories also performed antigliadin antibody tests. Sensitivity for endomysial antibody immunoglobulin A (IgA) varied from 57 to 90%. In all laboratories, the specificity for celiac disease was 100%. The sensitivity and specificity for both IgA and IgG antigliadin antibody varied significantly. When results from all three tests were combined in each laboratory, sensitivity was 90 to 100%. The specificity for endomysial antibody was 100% in the laboratories. Sensitivity was less than reported previously. Standardization of these tests is needed in the United States.

Research paper thumbnail of TGF-beta 2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo

The Journal of …, 1995

Migration of leukocytes through an in vitro, cell culture model of the blood-brain barrier (BBB) ... more Migration of leukocytes through an in vitro, cell culture model of the blood-brain barrier (BBB) composed of murine brain microvessel endothelial (En) cells and astrocytes, and in vivo in experimental allergic encephalomyelitis (EAE), was investigated. We have recently shown that the adhesiveness of cultured murine brain microvascular endothelial cells for lymphocytes can be increased significantly by pretreatment with IL-1 beta, TNF-alpha, IFN-gamma, and LPS. In the present study, we investigated the role of TGF-beta 2 on the migration of leukocytes through the BBB. In vitro migration was assessed by measuring the percentage of 51Cr-labeled leukocytes migrating through the En/astrocyte monolayers. The basal level of migration was up-regulated significantly by treating the En/astrocyte monolayers with IL-1 alpha, IFN-gamma, TNF-alpha, and LPS. The ability of these cytokines to modulate migration was dose-dependent. Treatment of En cell/astrocyte monolayers with TGF-beta 2 down-regulated the level of leukocyte migration up-regulated by IL-1 alpha, IFN-gamma, and TNF-alpha in vitro in a dose-dependent manner. TGF-beta 2 also inhibited the migration of lymphocytes into the central nervous system (CNS) in vivo in a dose-dependent fashion. Taken together, these findings strongly suggest that TGF-beta plays an important role in the reduction of lymphocyte infiltration into the CNS in inflammatory demyelinating diseases such as EAE.

Research paper thumbnail of Mitochondrial proton leak in obesity-resistant and obesity-prone mice

AJP: Regulatory, Integrative and Comparative Physiology, 2007

We quantified uncoupling proteins (UCPs) in molar amounts and assessed proton conductance in mito... more We quantified uncoupling proteins (UCPs) in molar amounts and assessed proton conductance in mitochondria isolated from interscapular brown adipose tissue (IBAT) and hindlimb muscle [known from prior work to contain ectopic brown adipose tissue (BAT) interspersed between muscle fibers] of obesity-resistant 129S6/SvEvTac (129) and obesity-prone C57BL/6 (B6) mice under conditions of low (LF) and high-fat (HF) feeding. With usual feeding, IBAT mitochondrial UCP1 content and proton conductance were greater in 129 mice than B6. However, with HF feeding, UCP1 and proton conductance increased more in B6 mice. Moreover, with HF feeding GDP-inhibitable proton conductance, specific for UCP1, equaled that seen in the 129 strain. UCP1 expression was substantial in mitochondria from hindlimb muscle tissue (ectopic BAT) of 129 mice as opposed to B6 but did not increase with HF feeding in either strain. As expected, muscle UCP3 expression increased with HF feeding in both strains but did not differ by strain. Moreover, the proton conductance of mitochondria isolated from hindlimb muscle tissue did not differ by strain or diet. Our data uncover a response to weight gain in obesity-prone (compared to resistant) mice unrecognized in prior studies that examined only UCP1 mRNA. Obesity-prone mice have the capacity to increase both IBAT UCP1 protein and mitochondrial proton conductance as much or more than obesity-resistant mice. But, this is only achieved only at a higher body mass and, therefore, may be adaptive rather than preventative. Neither obesity-prone nor resistant mice respond to HF feeding by expressing more UCP1 in ectopic BAT within muscle tissue.

Research paper thumbnail of Mitochondrial superoxide and coenzyme Q in insulin-deficient rats: increased electron leak

AJP: Regulatory, Integrative and Comparative Physiology, 2011

Mitochondrial superoxide is important in the pathogeneses of diabetes and its complications. Howe... more Mitochondrial superoxide is important in the pathogeneses of diabetes and its complications. However, there is uncertainty regarding the intrinsic propensity of mitochondria to generate this radical. Studies to date suggest that superoxide production by mitochondria of insulin-sensitive target tissues of insulin-deficient rodents is reduced or unchanged. Moreover, little is known of the role of the Coenzyme Q (CoQ), whose semiquinone form reacts with molecular oxygen to generate superoxide. We measured reactive oxygen species (ROS) production, respiratory parameters, and CoQ content in mitochondria from gastrocnemius muscle of control and streptozotocin (STZ)-diabetic rats. CoQ content did not differ between mitochondria isolated from vehicle- or STZ-treated animals. CoQ also was unaffected by weight loss in the absence of diabetes (induced by caloric restriction). Under state 4 or state 3 conditions, both respiration and ROS release were reduced in diabetic mitochondria fueled with succinate, glutamate plus malate, or with all three substrates (continuous TCA cycle). However, H(2)O(2) and directly measured superoxide production were substantially increased in gastrocnemius mitochondria of diabetic rats when expressed per unit oxygen consumed. On the basis of substrate and inhibitor effects, the mechanism involved multiple electron transport sites. More limited results using heart mitochondria were similar. ROS per unit respiration was greater in muscle mitochondria from diabetic compared with control rats during state 3, as well as state 4, while the reduction in ROS per unit respiration on transition to state 3 was less for diabetic mitochondria. In summary, ROS production is, in fact, increased in mitochondria from insulin-deficient muscle when considered relative to electron transport. This is evident on multiple energy substrates and in different respiratory states. CoQ is not reduced in diabetic mitochondria or with weight loss due to food restriction. The implications of these findings are discussed.

Research paper thumbnail of Bioenergetic Effects of Mitochondrial-Targeted Coenzyme Q Analogs in Endothelial Cells

Journal of Pharmacology and Experimental Therapeutics, 2012

Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative dama... more Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative damage induced by a variety of disease states. However, there is a need to understand the bioenergetic effects of these agents and whether or not these effects are related to redox properties, including their known pro-oxidant effects. We examined the bioenergetic effects of two mitochondrial-targeted CoQ analogs in their quinol forms, mitoquinol (MitoQ) and plastoquinonyl-decyl-triphenylphosphonium (SkQ1), in bovine aortic endothelial cells. We used an extracellular oxygen and proton flux analyzer to assess mitochondrial action at the intact-cell level. Both agents, in dose-dependent fashion, reduced the oxygen consumption rate (OCR) directed at ATP turnover (OCR ATP ) (IC 50 values of 189 Ϯ 13 nM for MitoQ and 181 Ϯ 7 for SKQ1; difference not significant) while not affecting or mildly increasing basal oxygen consumption. Both compounds increased extracellular acidifi-cation in the basal state consistent with enhanced glycolysis. Both compounds enhanced mitochondrial superoxide production assessed by using mitochondrial-targeted dihydroethidium, and both increased H 2 O 2 production from mitochondria of cells treated before isolation of the organelles. The manganese superoxide dismutase mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin did not alter or actually enhanced the actions of the targeted CoQ analogs to reduce OCR ATP . In contrast, N-acetylcysteine mitigated this effect of MitoQ and SkQ1. In summary, our data demonstrate the important bioenergetic effects of targeted CoQ analogs. Moreover, these effects are mediated, at least in part, through superoxide production but depend on conversion to H 2 O 2 . These bioenergetic and redox actions need to be considered as these compounds are developed for therapeutic purposes. Article, publication date, and citation information can be found at