J. Uniacke - Academia.edu (original) (raw)
Papers by J. Uniacke
Cancer Research, 2014
Human tumors display considerable diversity in their genetic makeup but share common physiologic ... more Human tumors display considerable diversity in their genetic makeup but share common physiologic attributes such as a hypoxic microenvironment that contribute to the malignant phenotype. Hypoxic cells switch from eukaryotic initiation factor 4E (eIF4E) to eIF4E2 cap-dependent translation to synthesize a portion of their proteins. Here, we show that genetically distinct human cancer cells exploit eIF4E2-directed protein synthesis to form cellular masses larger than approximately 0.15 mm, the diffusion limit of oxygen. Cancer cells depleted of eIF4E2 are indistinguishable from control cells under normoxic conditions, but are unable to survive and proliferate in low oxygen conditions. Activation of eIF4E2-directed translation is essential for cancer cells to form a hypoxic tumor core in in vitro spheroids and to form detectable tumors in in vivo xenograft assays. In contrast, the eIF4E-directed protein synthesis pathway alone cannot sustain cellular adaptation to hypoxia in vitro or confer tumorigenic potential in xenograft assays. These data demonstrate that the phenotypic expression of the cancer genome requires translation by the eIF4E2-directed hypoxic protein synthesis machinery. Cancer Res; 74(5); 1379-89. Ó2014 AACR.
Nature, 2012
The user has requested enhancement of the downloaded file.
Journal of Cell Science, 2015
The oxidation of biological molecules by reactive oxygen species (ROS) can render them inactive o... more The oxidation of biological molecules by reactive oxygen species (ROS) can render them inactive or toxic. This includes the oxidation of RNA, which appears to underlie the detrimental effects of oxidative stress, aging and certain neurodegenerative diseases. Here, we investigate the management of oxidized RNA in the chloroplast of the green alga Chlamydomonas reinhardtii. Our immunofluorescence microscopy results reveal that oxidized RNA (with 8-hydroxyguanine) is localized in the pyrenoid, a chloroplast microcompartment where CO2 is assimilated by the Calvin cycle enzyme Rubisco. Results of genetic analyses support a requirement for the Rubisco large subunit (RBCL), but not Rubisco, in the management of oxidized RNA. An RBCL pool that can carry out such a 'moonlighting' function is revealed by results of biochemical fractionation experiments. We also show that human (HeLa) cells localize oxidized RNA to cytoplasmic foci that are distinct from stress granules, processing bodies and mitochondria. Our results suggest that the compartmentalization of oxidized RNA management is a general phenomenon and therefore has some fundamental significance.
Methods in Molecular Biology, 2011
Here we describe how to use fluorescence in situ hybridization and immunofluorescence staining to... more Here we describe how to use fluorescence in situ hybridization and immunofluorescence staining to determine the in situ distributions of specific mRNAs and proteins in Chlamydomonas reinhardtii. This unicellular eukaryotic green alga is a major model organism in cell biological research. Chlamydomonas is well suited for these approaches because one can determine the cytological location of fluorescence signals within a characteristic cellular anatomy relative to prominent cytological markers. Moreover, FISH and IF staining offer practical alternatives to techniques involving fluorescent proteins, which are difficult to express and detect in Chlamydomonas. The main goal of this review is to describe these powerful tools and to facilitate their routine use in Chlamydomonas research.
THE PLANT CELL ONLINE, 2007
Many proteins of the photosynthesis complexes are encoded by the genome of the chloroplast and sy... more Many proteins of the photosynthesis complexes are encoded by the genome of the chloroplast and synthesized by bacteriumlike ribosomes within this organelle. To determine where proteins are synthesized for the de novo assembly and repair of photosystem II (PSII) in the chloroplast of Chlamydomonas reinhardtii, we used fluorescence in situ hybridization, immunofluorescence staining, and confocal microscopy. These locations were defined as having colocalized chloroplast mRNAs encoding PSII subunits and proteins of the chloroplast translation machinery specifically under conditions of PSII subunit synthesis. The results revealed that the synthesis of the D1 subunit for the repair of photodamaged PSII complexes occurs in regions of the chloroplast with thylakoids, consistent with the current model. However, for de novo PSII assembly, PSII subunit synthesis was detected in discrete regions near the pyrenoid, termed T zones (for translation zones). In two PSII assembly mutants, unassembled D1 subunits and incompletely assembled PSII complexes localized around the pyrenoid, where we propose that they mark an intermediate compartment of PSII assembly. These results reveal a novel chloroplast compartment that houses de novo PSII biogenesis and the regulated transport of newly assembled PSII complexes to thylakoid membranes throughout the chloroplast.
The Journal of Cell Biology, 2008
subunit of Rubisco; PABP, poly(A)-binding protein; PS II, Photosystem II; Rubisco, ribulosebispho... more subunit of Rubisco; PABP, poly(A)-binding protein; PS II, Photosystem II; Rubisco, ribulosebisphosphate carboxylase/oxygenase; SG, stress granule; SSU, small subunit of Rubisco.
Proceedings of the National Academy of Sciences, 2014
Epigenetic regulation of gene expression by DNA methylation plays a central role in the maintenan... more Epigenetic regulation of gene expression by DNA methylation plays a central role in the maintenance of cellular homeostasis. Here we present evidence implicating the DNA methylation program in the regulation of hypoxia-inducible factor (HIF) oxygensensing machinery and hypoxic cell metabolism. We show that DNA methyltransferase 3a (DNMT3a) methylates and silences the HIF-2α gene (EPAS1) in differentiated cells. Epigenetic silencing of EPAS1 prevents activation of the HIF-2α gene program associated with hypoxic cell growth, thereby limiting the proliferative capacity of adult cells under low oxygen tension. Naturally occurring defects in DNMT3a, observed in primary tumors and malignant cells, cause the unscheduled activation of EPAS1 in early dysplastic foci. This enables incipient cancer cells to exploit the HIF-2α pathway in the hypoxic tumor microenvironment necessary for the formation of cellular masses larger than the oxygen diffusion limit. Reintroduction of DNMT3a in DNMT3a-defective cells restores EPAS1 epigenetic silencing, prevents hypoxic cell growth, and suppresses tumorigenesis. These data support a tumor-suppressive role for DNMT3a as an epigenetic regulator of the HIF-2α oxygensensing pathway and the cellular response to hypoxia.
Proceedings of the National Academy of Sciences, 2009
The compartmentalization of eukaryotic cells requires that newly synthesized proteins be targeted... more The compartmentalization of eukaryotic cells requires that newly synthesized proteins be targeted to the compartments in which they function. In chloroplasts, a few thousand proteins function in photosynthesis, expression of the chloroplast genome, and other processes. Most chloroplast proteins are synthesized in the cytoplasm, imported, and then targeted to a specific chloroplast compartment. The remainder are encoded by the chloroplast genome, synthesized within the organelle, and targeted by mechanisms that are only beginning to be elucidated. We used fluorescence confocal microscopy to explore the targeting mechanisms used by several chloroplast proteins in the green alga Chlamydomonas. These include the small subunit of ribulose bisphosphate carboxylase (rubisco) and the light-harvesting complex II (LHCII) subunits, which are imported from the cytoplasm, and 2 proteins synthesized in the chloroplast: the D1 subunit of photosystem II and the rubisco large subunit. We determined whether the targeting of each protein involves localized translation of the mRNA that encodes it. When this was the case, we explored whether the targeting sequence was in the nascent polypeptide or in the mRNA, based on whether the localization was translation-dependent or -independent, respectively. The results reveal 2 novel examples of targeting by localized translation, in LHCII subunit import and the targeting of the rubisco large subunit to the pyrenoid. They also demonstrate examples of each of the three known mechanismsposttranslational, cotranslational (signal recognition particle-mediated), and mRNA-based-in the targeting of specific chloroplast proteins. Our findings can help guide the exploration of these pathways at the biochemical level.
Nature, 2012
The user has requested enhancement of the downloaded file.
Molecular Biology of the Cell, 2013
The nucleolus is a plurifunctional organelle in which structure and function are intimately linke... more The nucleolus is a plurifunctional organelle in which structure and function are intimately linked. Its structural plasticity has long been appreciated, particularly in response to transcriptional inhibition and other cellular stresses, although the mechanism and physiological relevance of these phenomena are unclear. Using MCF-7 and other mammalian cell lines, we describe a structural and functional adaptation of the nucleolus, triggered by heat shock or physiological acidosis, that depends on the expression of ribosomal intergenic spacer long noncoding RNA (IGS lncRNA). At the heart of this process is the de novo formation of a large subnucleolar structure, termed the detention center (DC). The DC is a spatially and dynamically distinct region, characterized by an 8-anilino-1-naphthalenesulfonate-positive hydrophobic signature. Its formation is accompanied by redistribution of nucleolar factors and arrest in ribosomal biogenesis. Silencing of regulatory IGS lncRNA prevents the creation of this structure and allows the nucleolus to retain its tripartite organization and transcriptional activity. Signal termination causes a decrease in IGS transcript levels and a return to the active nucleolar conformation. We propose that the induction of IGS lncRNA by environmental signals operates as a molecular switch that regulates the structure and function of the nucleolus. in the nucleolar proteome are also observed in response to DNA damage and viral infection . Reversible disorganization of nucleolar structure can be induced by
Cancer Research, 2014
Human tumors display considerable diversity in their genetic makeup but share common physiologic ... more Human tumors display considerable diversity in their genetic makeup but share common physiologic attributes such as a hypoxic microenvironment that contribute to the malignant phenotype. Hypoxic cells switch from eukaryotic initiation factor 4E (eIF4E) to eIF4E2 cap-dependent translation to synthesize a portion of their proteins. Here, we show that genetically distinct human cancer cells exploit eIF4E2-directed protein synthesis to form cellular masses larger than approximately 0.15 mm, the diffusion limit of oxygen. Cancer cells depleted of eIF4E2 are indistinguishable from control cells under normoxic conditions, but are unable to survive and proliferate in low oxygen conditions. Activation of eIF4E2-directed translation is essential for cancer cells to form a hypoxic tumor core in in vitro spheroids and to form detectable tumors in in vivo xenograft assays. In contrast, the eIF4E-directed protein synthesis pathway alone cannot sustain cellular adaptation to hypoxia in vitro or confer tumorigenic potential in xenograft assays. These data demonstrate that the phenotypic expression of the cancer genome requires translation by the eIF4E2-directed hypoxic protein synthesis machinery. Cancer Res; 74(5); 1379-89. Ó2014 AACR.
Cancer Research, 2014
Human tumors display considerable diversity in their genetic makeup but share common physiologic ... more Human tumors display considerable diversity in their genetic makeup but share common physiologic attributes such as a hypoxic microenvironment that contribute to the malignant phenotype. Hypoxic cells switch from eukaryotic initiation factor 4E (eIF4E) to eIF4E2 cap-dependent translation to synthesize a portion of their proteins. Here, we show that genetically distinct human cancer cells exploit eIF4E2-directed protein synthesis to form cellular masses larger than approximately 0.15 mm, the diffusion limit of oxygen. Cancer cells depleted of eIF4E2 are indistinguishable from control cells under normoxic conditions, but are unable to survive and proliferate in low oxygen conditions. Activation of eIF4E2-directed translation is essential for cancer cells to form a hypoxic tumor core in in vitro spheroids and to form detectable tumors in in vivo xenograft assays. In contrast, the eIF4E-directed protein synthesis pathway alone cannot sustain cellular adaptation to hypoxia in vitro or confer tumorigenic potential in xenograft assays. These data demonstrate that the phenotypic expression of the cancer genome requires translation by the eIF4E2-directed hypoxic protein synthesis machinery. Cancer Res; 74(5); 1379-89. Ó2014 AACR.
Nature, 2012
The user has requested enhancement of the downloaded file.
Journal of Cell Science, 2015
The oxidation of biological molecules by reactive oxygen species (ROS) can render them inactive o... more The oxidation of biological molecules by reactive oxygen species (ROS) can render them inactive or toxic. This includes the oxidation of RNA, which appears to underlie the detrimental effects of oxidative stress, aging and certain neurodegenerative diseases. Here, we investigate the management of oxidized RNA in the chloroplast of the green alga Chlamydomonas reinhardtii. Our immunofluorescence microscopy results reveal that oxidized RNA (with 8-hydroxyguanine) is localized in the pyrenoid, a chloroplast microcompartment where CO2 is assimilated by the Calvin cycle enzyme Rubisco. Results of genetic analyses support a requirement for the Rubisco large subunit (RBCL), but not Rubisco, in the management of oxidized RNA. An RBCL pool that can carry out such a 'moonlighting' function is revealed by results of biochemical fractionation experiments. We also show that human (HeLa) cells localize oxidized RNA to cytoplasmic foci that are distinct from stress granules, processing bodies and mitochondria. Our results suggest that the compartmentalization of oxidized RNA management is a general phenomenon and therefore has some fundamental significance.
Methods in Molecular Biology, 2011
Here we describe how to use fluorescence in situ hybridization and immunofluorescence staining to... more Here we describe how to use fluorescence in situ hybridization and immunofluorescence staining to determine the in situ distributions of specific mRNAs and proteins in Chlamydomonas reinhardtii. This unicellular eukaryotic green alga is a major model organism in cell biological research. Chlamydomonas is well suited for these approaches because one can determine the cytological location of fluorescence signals within a characteristic cellular anatomy relative to prominent cytological markers. Moreover, FISH and IF staining offer practical alternatives to techniques involving fluorescent proteins, which are difficult to express and detect in Chlamydomonas. The main goal of this review is to describe these powerful tools and to facilitate their routine use in Chlamydomonas research.
THE PLANT CELL ONLINE, 2007
Many proteins of the photosynthesis complexes are encoded by the genome of the chloroplast and sy... more Many proteins of the photosynthesis complexes are encoded by the genome of the chloroplast and synthesized by bacteriumlike ribosomes within this organelle. To determine where proteins are synthesized for the de novo assembly and repair of photosystem II (PSII) in the chloroplast of Chlamydomonas reinhardtii, we used fluorescence in situ hybridization, immunofluorescence staining, and confocal microscopy. These locations were defined as having colocalized chloroplast mRNAs encoding PSII subunits and proteins of the chloroplast translation machinery specifically under conditions of PSII subunit synthesis. The results revealed that the synthesis of the D1 subunit for the repair of photodamaged PSII complexes occurs in regions of the chloroplast with thylakoids, consistent with the current model. However, for de novo PSII assembly, PSII subunit synthesis was detected in discrete regions near the pyrenoid, termed T zones (for translation zones). In two PSII assembly mutants, unassembled D1 subunits and incompletely assembled PSII complexes localized around the pyrenoid, where we propose that they mark an intermediate compartment of PSII assembly. These results reveal a novel chloroplast compartment that houses de novo PSII biogenesis and the regulated transport of newly assembled PSII complexes to thylakoid membranes throughout the chloroplast.
The Journal of Cell Biology, 2008
subunit of Rubisco; PABP, poly(A)-binding protein; PS II, Photosystem II; Rubisco, ribulosebispho... more subunit of Rubisco; PABP, poly(A)-binding protein; PS II, Photosystem II; Rubisco, ribulosebisphosphate carboxylase/oxygenase; SG, stress granule; SSU, small subunit of Rubisco.
Proceedings of the National Academy of Sciences, 2014
Epigenetic regulation of gene expression by DNA methylation plays a central role in the maintenan... more Epigenetic regulation of gene expression by DNA methylation plays a central role in the maintenance of cellular homeostasis. Here we present evidence implicating the DNA methylation program in the regulation of hypoxia-inducible factor (HIF) oxygensensing machinery and hypoxic cell metabolism. We show that DNA methyltransferase 3a (DNMT3a) methylates and silences the HIF-2α gene (EPAS1) in differentiated cells. Epigenetic silencing of EPAS1 prevents activation of the HIF-2α gene program associated with hypoxic cell growth, thereby limiting the proliferative capacity of adult cells under low oxygen tension. Naturally occurring defects in DNMT3a, observed in primary tumors and malignant cells, cause the unscheduled activation of EPAS1 in early dysplastic foci. This enables incipient cancer cells to exploit the HIF-2α pathway in the hypoxic tumor microenvironment necessary for the formation of cellular masses larger than the oxygen diffusion limit. Reintroduction of DNMT3a in DNMT3a-defective cells restores EPAS1 epigenetic silencing, prevents hypoxic cell growth, and suppresses tumorigenesis. These data support a tumor-suppressive role for DNMT3a as an epigenetic regulator of the HIF-2α oxygensensing pathway and the cellular response to hypoxia.
Proceedings of the National Academy of Sciences, 2009
The compartmentalization of eukaryotic cells requires that newly synthesized proteins be targeted... more The compartmentalization of eukaryotic cells requires that newly synthesized proteins be targeted to the compartments in which they function. In chloroplasts, a few thousand proteins function in photosynthesis, expression of the chloroplast genome, and other processes. Most chloroplast proteins are synthesized in the cytoplasm, imported, and then targeted to a specific chloroplast compartment. The remainder are encoded by the chloroplast genome, synthesized within the organelle, and targeted by mechanisms that are only beginning to be elucidated. We used fluorescence confocal microscopy to explore the targeting mechanisms used by several chloroplast proteins in the green alga Chlamydomonas. These include the small subunit of ribulose bisphosphate carboxylase (rubisco) and the light-harvesting complex II (LHCII) subunits, which are imported from the cytoplasm, and 2 proteins synthesized in the chloroplast: the D1 subunit of photosystem II and the rubisco large subunit. We determined whether the targeting of each protein involves localized translation of the mRNA that encodes it. When this was the case, we explored whether the targeting sequence was in the nascent polypeptide or in the mRNA, based on whether the localization was translation-dependent or -independent, respectively. The results reveal 2 novel examples of targeting by localized translation, in LHCII subunit import and the targeting of the rubisco large subunit to the pyrenoid. They also demonstrate examples of each of the three known mechanismsposttranslational, cotranslational (signal recognition particle-mediated), and mRNA-based-in the targeting of specific chloroplast proteins. Our findings can help guide the exploration of these pathways at the biochemical level.
Nature, 2012
The user has requested enhancement of the downloaded file.
Molecular Biology of the Cell, 2013
The nucleolus is a plurifunctional organelle in which structure and function are intimately linke... more The nucleolus is a plurifunctional organelle in which structure and function are intimately linked. Its structural plasticity has long been appreciated, particularly in response to transcriptional inhibition and other cellular stresses, although the mechanism and physiological relevance of these phenomena are unclear. Using MCF-7 and other mammalian cell lines, we describe a structural and functional adaptation of the nucleolus, triggered by heat shock or physiological acidosis, that depends on the expression of ribosomal intergenic spacer long noncoding RNA (IGS lncRNA). At the heart of this process is the de novo formation of a large subnucleolar structure, termed the detention center (DC). The DC is a spatially and dynamically distinct region, characterized by an 8-anilino-1-naphthalenesulfonate-positive hydrophobic signature. Its formation is accompanied by redistribution of nucleolar factors and arrest in ribosomal biogenesis. Silencing of regulatory IGS lncRNA prevents the creation of this structure and allows the nucleolus to retain its tripartite organization and transcriptional activity. Signal termination causes a decrease in IGS transcript levels and a return to the active nucleolar conformation. We propose that the induction of IGS lncRNA by environmental signals operates as a molecular switch that regulates the structure and function of the nucleolus. in the nucleolar proteome are also observed in response to DNA damage and viral infection . Reversible disorganization of nucleolar structure can be induced by
Cancer Research, 2014
Human tumors display considerable diversity in their genetic makeup but share common physiologic ... more Human tumors display considerable diversity in their genetic makeup but share common physiologic attributes such as a hypoxic microenvironment that contribute to the malignant phenotype. Hypoxic cells switch from eukaryotic initiation factor 4E (eIF4E) to eIF4E2 cap-dependent translation to synthesize a portion of their proteins. Here, we show that genetically distinct human cancer cells exploit eIF4E2-directed protein synthesis to form cellular masses larger than approximately 0.15 mm, the diffusion limit of oxygen. Cancer cells depleted of eIF4E2 are indistinguishable from control cells under normoxic conditions, but are unable to survive and proliferate in low oxygen conditions. Activation of eIF4E2-directed translation is essential for cancer cells to form a hypoxic tumor core in in vitro spheroids and to form detectable tumors in in vivo xenograft assays. In contrast, the eIF4E-directed protein synthesis pathway alone cannot sustain cellular adaptation to hypoxia in vitro or confer tumorigenic potential in xenograft assays. These data demonstrate that the phenotypic expression of the cancer genome requires translation by the eIF4E2-directed hypoxic protein synthesis machinery. Cancer Res; 74(5); 1379-89. Ó2014 AACR.