J. Williams - Academia.edu (original) (raw)
Uploads
Papers by J. Williams
Regulatory Peptides, 1989
We have previously shown that the pancreatic cholecystokinin (CCK) receptor can be solubilized in... more We have previously shown that the pancreatic cholecystokinin (CCK) receptor can be solubilized in 1% digitonin. In this study, digitonin-solubilized CCK receptors from rat pancreas were purified using sequential affinity chromatography on ricin-II agarose and on AffiGeI-CCK. Electrophoresis of the radioiodinated purified receptors on SDS-polyacrylamide gels followed by autoradiography revealed two proteins: a major band of Mr = 80,000-90,000, and a minor band of Mr = 55,000. Through the purification procedure, the receptors preserved their agonist specificity (CCK-8 < CCK-33 < desulfated CCK-8 < CCK-4) and binding affinity. Scatchard transformations of binding data for the purified receptor preparation were best fit by linear plots compatible with a single class of binding sites with Ka = 9.4 nM. The estimated purification was about 80,000 fold and consistent with the expected Bmax for a pure Mr = 80,000 protein binding one CCK molecule. This two-step purification procedure opens the possibility for molecular studies of the CCK receptor.
AJP: Gastrointestinal and Liver Physiology, 2010
JA. CCK-independent mTORC1 activation during dietary proteininduced exocrine pancreas growth. Die... more JA. CCK-independent mTORC1 activation during dietary proteininduced exocrine pancreas growth. Dietary protein can stimulate pancreatic growth in the absence of CCK release, but there is little data on the regulation of CCK-independent growth. To identify mechanisms whereby protein stimulates pancreatic growth in the absence of CCK release, C57BL/6 control and CCK-null male mice were fed normal-protein (14% casein) or high-protein (75% casein) chow for 7 days. The weight of the pancreas increased by 32% in C57BL/6 mice and 26% in CCK-null mice fed high-protein chow. Changes in pancreatic weight in control mice were due to both cell hypertrophy and hyperplasia since there was an increase in protein-to-DNA ratio, total DNA content, and DNA synthesis. In CCK-null mice pancreatic growth was almost entirely due to hypertrophy with both protein-to-DNA ratio and cell size increasing without significant increases in DNA content or DNA synthesis. ERK, calcineurin, and mammalian target of rapamycin complex 1 (mTORC1) are activated in models of CCK-induced growth, but there were no differences in ERK or calcineurin activation between fasted and fed CCK-null mice. In contrast, mTORC1 activation was increased after feeding and the duration of activation was prolonged in mice fed high-protein chow compared with normal-protein chow. Changes in pancreatic weight and RNA content were completely inhibited, and changes in protein content were partially abated, when the mTORC1 inhibitor rapamycin was administered during high-protein chow feeding. Prolonged mTORC1 activation is thus required for dietary protein-induced pancreatic growth in the absence of CCK.
Regulatory Peptides, 1989
We have previously shown that the pancreatic cholecystokinin (CCK) receptor can be solubilized in... more We have previously shown that the pancreatic cholecystokinin (CCK) receptor can be solubilized in 1% digitonin. In this study, digitonin-solubilized CCK receptors from rat pancreas were purified using sequential affinity chromatography on ricin-II agarose and on AffiGeI-CCK. Electrophoresis of the radioiodinated purified receptors on SDS-polyacrylamide gels followed by autoradiography revealed two proteins: a major band of Mr = 80,000-90,000, and a minor band of Mr = 55,000. Through the purification procedure, the receptors preserved their agonist specificity (CCK-8 < CCK-33 < desulfated CCK-8 < CCK-4) and binding affinity. Scatchard transformations of binding data for the purified receptor preparation were best fit by linear plots compatible with a single class of binding sites with Ka = 9.4 nM. The estimated purification was about 80,000 fold and consistent with the expected Bmax for a pure Mr = 80,000 protein binding one CCK molecule. This two-step purification procedure opens the possibility for molecular studies of the CCK receptor.
AJP: Gastrointestinal and Liver Physiology, 2010
JA. CCK-independent mTORC1 activation during dietary proteininduced exocrine pancreas growth. Die... more JA. CCK-independent mTORC1 activation during dietary proteininduced exocrine pancreas growth. Dietary protein can stimulate pancreatic growth in the absence of CCK release, but there is little data on the regulation of CCK-independent growth. To identify mechanisms whereby protein stimulates pancreatic growth in the absence of CCK release, C57BL/6 control and CCK-null male mice were fed normal-protein (14% casein) or high-protein (75% casein) chow for 7 days. The weight of the pancreas increased by 32% in C57BL/6 mice and 26% in CCK-null mice fed high-protein chow. Changes in pancreatic weight in control mice were due to both cell hypertrophy and hyperplasia since there was an increase in protein-to-DNA ratio, total DNA content, and DNA synthesis. In CCK-null mice pancreatic growth was almost entirely due to hypertrophy with both protein-to-DNA ratio and cell size increasing without significant increases in DNA content or DNA synthesis. ERK, calcineurin, and mammalian target of rapamycin complex 1 (mTORC1) are activated in models of CCK-induced growth, but there were no differences in ERK or calcineurin activation between fasted and fed CCK-null mice. In contrast, mTORC1 activation was increased after feeding and the duration of activation was prolonged in mice fed high-protein chow compared with normal-protein chow. Changes in pancreatic weight and RNA content were completely inhibited, and changes in protein content were partially abated, when the mTORC1 inhibitor rapamycin was administered during high-protein chow feeding. Prolonged mTORC1 activation is thus required for dietary protein-induced pancreatic growth in the absence of CCK.