Jake Brockbank - Academia.edu (original) (raw)

Uploads

Papers by Jake Brockbank

Research paper thumbnail of 1D and 2D GLOBAL STRONG SOLUTIONS OF NAVIER STOKES EXISTENCE AND UNIQUENESS

Consider the Navier-Stokes equation for a one-dimensional and two-dimensional compressible viscou... more Consider the Navier-Stokes equation for a one-dimensional and two-dimensional compressible viscous liquid. It is a well-known fact that there is a strong solution locally in time when the initial data is smooth and the initial density is limited down by a positive constant. In this article, under the same hypothesis, I show that the density remains uniformly limited in time from the bottom by a positive constant, and therefore a strong solution exists globally in time. In addition, most existing results are obtained with a positive viscosity factor, but current results are true even if the viscosity factor disappears with density. Finally, I prove that this solution is unique in a class of weak solutions that satisfy the usual entropy inequalities. The point of this work is the new entropy-like inequalities that Bresch and Desjardins introduced into the shallow water system of equations. This discrepancy gives the density additional regularity (assuming such regularity exists first)...

Research paper thumbnail of 1D and 2D GLOBAL STRONG SOLUTIONS OF NAVIER STOKES EXISTENCE AND UNIQUENESS

Consider the Navier-Stokes equation for a one-dimensional and two-dimensional compressible viscou... more Consider the Navier-Stokes equation for a one-dimensional and two-dimensional compressible viscous liquid. It is a well-known fact that there is a strong solution locally in time when the initial data is smooth and the initial density is limited down by a positive constant. In this article, under the same hypothesis, I show that the density remains uniformly limited in time from the bottom by a positive constant, and therefore a strong solution exists globally in time. In addition, most existing results are obtained with a positive viscosity factor, but current results are true even if the viscosity factor disappears with density. Finally, I prove that this solution is unique in a class of weak solutions that satisfy the usual entropy inequalities. The point of this work is the new entropy-like inequalities that Bresch and Desjardins introduced into the shallow water system of equations. This discrepancy gives the density additional regularity (assuming such regularity exists first)...

Log In