James Muckerman - Academia.edu (original) (raw)
Papers by James Muckerman
Coordination Chemistry Reviews, 2010
The Journal of Physical Chemistry, 1979
ABSTRACT
J Am Chem Soc, 2006
Pulsed 355 nm laser excitation of toluene or hexane solutions containing W-L (W = mer,trans-W(CO)... more Pulsed 355 nm laser excitation of toluene or hexane solutions containing W-L (W = mer,trans-W(CO)3(PCy3)2; PCy3 = tricyclohexylphosphine; L = H2, D2, N2, C2H4, or CH3CN) resulted in the photoejection of ligand L and the formation of W. A combination of nanosecond UV-vis flash photolysis and time-resolved step-scan FTIR (s2-FTIR) spectroscopy was used to spectroscopically characterize the photoproduct, W, and directly measure the rate constants for binding of the ligands L to W to reform W-L under pseudo-first-order conditions. From these data, equilibrium constants for the binding of L to W were estimated. The UV-vis flash photolysis experiments were also performed as a function of pressure in order to determine the activation volumes, DeltaV thermodynamic, for the reaction of W with L. Small activation volumes ranging from -7 to +3 cm3 mol(-1) were obtained, suggesting that despite the crowded W center an interchange mechanism between L and the agostic W...H-C interaction of one of the PCy3 ligands (or a weak interaction with a solvent molecule) at the W center takes place in the transition state. Density functional theory (DFT) calculations were performed at the B3LYP level of theory on W with/without the agostic C-H interaction of the PCy3 ligand and also on the series of model complexes, mer,trans-W(CO)3(PH3)2L (W'-L, where L = H2, N2, C2H4, CO, or n-hexane) in an effort to confirm the infrared spectroscopic assignment of the W-L complexes, to simulate and assign the electronic transitions in the UV-vis spectra, to determine the nature of the HOMO and LUMO of W-L, and to understand the agostic C-H interaction of the ligand vs solvent interaction. Our DFT calculations indicate an entropy effect that favors agostic W...H-C interaction over a solvent sigma C-H interaction by 8-10 kcal mol(-1).
Journal of the American Chemical Society, Aug 4, 2011
A detailed characterization of intermediates in water oxidation catalyzed by a mononuclear Ru pol... more A detailed characterization of intermediates in water oxidation catalyzed by a mononuclear Ru polypyridyl complex [Ru(II)-OH(2)](2+) (Ru = Ru complex with one 4-t-butyl-2,6-di-(1',8'-naphthyrid-2'-yl)-pyridine ligand and two 4-picoline ligands) has been carried out using electrochemistry, UV-vis and resonance Raman spectroscopy, pulse radiolysis, stopped flow, and electrospray ionization mass spectrometry (ESI-MS) with H(2)(18)O labeling experiments and theoretical calculations. The results reveal a number of intriguing properties of intermediates such as [Ru(IV)═O](2+) and [Ru(IV)-OO](2+). At pH > 2.9, two consecutive proton-coupled one-electron steps take place at the potential of the [Ru(III)-OH](2+)/[Ru(II)-OH(2)](2+) couple, which is equal to or higher than the potential of the [Ru(IV)═O](2+)/[Ru(III)-OH](2+) couple (i.e., the observation of a two-electron oxidation in cyclic voltammetry). At pH 1, the rate constant of the first one-electron oxidation by Ce(IV) is k(1) = 2 × 10(4) M(-1) s(-1). While pH-independent oxidation of [Ru(IV)═O](2+) takes place at 1420 mV vs NHE, bulk electrolysis of [Ru(II)-OH(2)](2+) at 1260 mV vs NHE at pH 1 (0.1 M triflic acid) and 1150 mV at pH 6 (10 mM sodium phosphate) yielded a red colored solution with a Coulomb count corresponding to a net four-electron oxidation. ESI-MS with labeling experiments clearly indicates that this species has an O-O bond. This species required an additional oxidation to liberate an oxygen molecule, and without any additional oxidant it completely decomposed slowly to form [Ru(II)-OOH](+) over 2 weeks. While there remains some conflicting evidence, we have assigned this species as (1)[Ru(IV)-η(2)-OO](2+) based on our electrochemical, spectroscopic, and theoretical observations alongside a previously reported analysis by T. J. Meyer's group (J. Am. Chem. Soc. 2010, 132, 1545-1557).
Inorganic Chemistry, Aug 17, 2009
The enthalpies of binding of a number of N-donor ligands to the complex Mo(P(i)Pr(3))(2)(CO)(3) i... more The enthalpies of binding of a number of N-donor ligands to the complex Mo(P(i)Pr(3))(2)(CO)(3) in toluene have been determined by solution calorimetry and equilibrium measurements. The measured binding enthalpies span a range of approximately 10 kcal mol(-1): DeltaH(binding) = -8.8 +/- 1.2 (N(2)-Mo(P(i)Pr(3))(2)(CO)(3)); -10.3 +/- 0.8 (N(2)); -11.2 +/- 0.4 (AdN(3) (Ad = 1-adamantyl)); -13.8 +/- 0.5 (N(2)CHSiMe(3)); -14.9 +/- 0.9 (pyrazine = pz); -14.8 +/- 0.6 (2,6-Me(2)pz); -15.5 +/- 1.8 (Me(2)NCN); -16.6 +/- 0.4 (CH(3)CN); -17.0 +/- 0.4 (pyridine); -17.5 +/- 0.8 ([4-CH(3)pz][PF(6)] (in tetrahydrofuran)); -17.6 +/- 0.4 (C(6)H(5)CN); -18.6 +/- 1.8 (N(2)CHC( horizontal lineO)OEt); and -19.3 +/- 2.5 kcal mol(-1) (pz)Mo(P(i)Pr(3))(2)(CO)(3)). The value for the isonitrile AdNC (-29.0 +/- 0.3) is 12.3 kcal mol(-1) more exothermic than that of the nitrile AdCN (-16.7 +/- 0.6 kcal mol(-1)). The enthalpies of binding of a range of arene nitrile ligands were also studied, and remarkably, most nitrile complexes were clustered within a 1 kcal mol(-1) range despite dramatic color changes and variation of nu(CN). Computed structural and spectroscopic parameters for the complexes Mo(P(i)Pr(3))(2)(CO)(3)L are in good agreement with experimental data. Computed binding enthalpies for Mo(P(i)Pr(3))(2)(CO)(3)L exhibit considerable scatter and are generally smaller compared to the experimental values, but relative agreement is reasonable. Computed enthalpies of binding using a larger basis set for Mo(PMe(3))(2)(CO)(3)L show a better fit to experimental data than that for Mo(P(i)Pr(3))(2)(CO)(3)L using a smaller basis set. Crystal structures of Mo(P(i)Pr(3))(2)(CO)(3)(AdCN), W(P(i)Pr(3))(2)(CO)(3)(Me(2)NCN), W(P(i)Pr(3))(2)(CO)(3)(2,6-F(2)C(6)H(3)CN), W(P(i)Pr(3))(2)(CO)(3)(2,4,6-Me(3)C(6)H(2)CN), W(P(i)Pr(3))(2)(CO)(3)(2,6-Me(2)pz), W(P(i)Pr(3))(2)(CO)(3)(AdCN), Mo(P(i)Pr(3))(2)(CO)(3)(AdNC), and W(P(i)Pr(3))(2)(CO)(3)(AdNC) are reported.
The Journal of Chemical Physics, Sep 15, 1990
The competition between desorption and relaxation of vibrationally excited CO adsorbed on a serie... more The competition between desorption and relaxation of vibrationally excited CO adsorbed on a series of model surfaces is examined theoretically using a classical mechanical description of the dynamics. The analogy between these processes and the vibrational predissociation of van der Waals molecules in the gas phase is emphasized. This study, which is restricted to a collinear arrangement of the adsorbate and surface atoms explores the effect of a systematic variation of the parameters of the simple model systems. The parameters varied include the surface Debye frequency and the strength of the adsorbate-surface interaction. Rate constants for the competing processes of predesorption, relaxation, and thermal desorption of both excited and relaxed adsorbate molecules are extracted as a function of the parameter values. Surface vibrations in models of NaCl and Si were found to accelerate the classical predesorption rate compared to the case of a stationary surface. This effect can be rationalized in terms of an impulsive collision mechanism. Raising the surface Debye frequency was found to enhance relaxation at the expense of predesorption. Mode mixing between adsorbate and surface modes appears to be a more important factor in this regard than Fermi resonance, or mode matching. Thermal desorption was not found to be a significant process in these classical calculations. Comparisons with parallel quantal calculations are made in the following paper.
The Journal of Physical Chemistry
ABSTRACT
The Journal of Physical Chemistry
ABSTRACT
The Journal of Physical Chemistry A
An analysis is provided of the subnanosecond dynamic solvation of ionic liquids in particular and... more An analysis is provided of the subnanosecond dynamic solvation of ionic liquids in particular and ionic solutions in general. It is our hypothesis that solvation relaxation in ionic fluids, in the nonglassy and nonsupercooled regimes, can be understood rather simply in terms of the dielectric spectra of the solvent. This idea is suggested by the comparison of imidazolium ionic liquids with their pure organic counterpart, butylimidazole (J. Phys. Chem. B 2004, 108, 10245-10255). It is borne out by a calculation of the solvation correlation time from frequency dependent dielectric data for the ionic liquid, ethylammonium nitrate, and for the electrolyte solution of methanol and sodium perchlorate. Very good agreement is obtained between these theoretically calculated solvation relaxation functions and those obtained from fluorescence upconversion spectroscopy. Our comparisons suggest that translational motion of ions may not be the predominant factor in short-time solvation of ionic fluids and that many tools and ideas about solvation dynamics in polar solvents can be adapted to ionic fluids.
Coordination Chemistry Reviews, 2006
Previous kinetic studies of photoinitiated transition metal–dinitrogen bond forming reactions are... more Previous kinetic studies of photoinitiated transition metal–dinitrogen bond forming reactions are reviewed, with an emphasis on room temperature reactivity, and in particular, the techniques of time-resolved infrared (TRIR) spectroscopy and UV–vis flash photolysis. Our recent results on the reactivity of the formally 16-electron, but agostically stabilized, complex, mer,trans-W(CO)3(PCy3)2 (W) (Cy=cyclohexyl) toward N2 in toluene and n-hexane solution are then discussed.
The Journal of Physical Chemistry C
... Lin Lin Jensen, ‡ James T. Muckerman,* † and Marshall D. Newton †. Chemistry Department, Broo... more ... Lin Lin Jensen, ‡ James T. Muckerman,* † and Marshall D. Newton †. Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, and Department of Chemistry, Penn State University, State College, Pennsylvania 16803. J. Phys. Chem. ...
Angewandte Chemie (International ed. in English), Jan 2, 2015
We prepared two geometric isomers of [Ir(tpy)(ppy)H](+) , previously proposed as a key intermedia... more We prepared two geometric isomers of [Ir(tpy)(ppy)H](+) , previously proposed as a key intermediate in the photochemical reduction of CO2 to CO, and characterized their notably different ground- and excited-state interactions with CO2 and their hydricities using experimental and computational methods. Only one isomer, C-trans-[Ir(tpy)(ppy)H](+) , reacts with CO2 to generate the formato complex in the ground state, consistent with its calculated hydricity. Under photocatalytic conditions in CH3 CN/TEOA, a common reactive C-trans-[Ir(tpy)(ppy)](0) species, irrespective of the starting isomer or monodentate ligand (such as hydride or Cl), reacts with CO2 and produces CO with the same catalytic efficiency.
The Journal of Physical Chemistry, 1979
ABSTRACT
In an attempt to tailor low-cost, precious-metal-free electrocatalysts for water electrolysis in ... more In an attempt to tailor low-cost, precious-metal-free electrocatalysts for water electrolysis in acid, molybdenum carbide (b-Mo 2 C) nanoparticles are prepared by in situ carburization of ammonium molybdate on carbon nanotubes and XC-72R carbon black without using any gaseous carbon source.
Coordination Chemistry Reviews, 2010
The Journal of Physical Chemistry, 1979
ABSTRACT
J Am Chem Soc, 2006
Pulsed 355 nm laser excitation of toluene or hexane solutions containing W-L (W = mer,trans-W(CO)... more Pulsed 355 nm laser excitation of toluene or hexane solutions containing W-L (W = mer,trans-W(CO)3(PCy3)2; PCy3 = tricyclohexylphosphine; L = H2, D2, N2, C2H4, or CH3CN) resulted in the photoejection of ligand L and the formation of W. A combination of nanosecond UV-vis flash photolysis and time-resolved step-scan FTIR (s2-FTIR) spectroscopy was used to spectroscopically characterize the photoproduct, W, and directly measure the rate constants for binding of the ligands L to W to reform W-L under pseudo-first-order conditions. From these data, equilibrium constants for the binding of L to W were estimated. The UV-vis flash photolysis experiments were also performed as a function of pressure in order to determine the activation volumes, DeltaV thermodynamic, for the reaction of W with L. Small activation volumes ranging from -7 to +3 cm3 mol(-1) were obtained, suggesting that despite the crowded W center an interchange mechanism between L and the agostic W...H-C interaction of one of the PCy3 ligands (or a weak interaction with a solvent molecule) at the W center takes place in the transition state. Density functional theory (DFT) calculations were performed at the B3LYP level of theory on W with/without the agostic C-H interaction of the PCy3 ligand and also on the series of model complexes, mer,trans-W(CO)3(PH3)2L (W'-L, where L = H2, N2, C2H4, CO, or n-hexane) in an effort to confirm the infrared spectroscopic assignment of the W-L complexes, to simulate and assign the electronic transitions in the UV-vis spectra, to determine the nature of the HOMO and LUMO of W-L, and to understand the agostic C-H interaction of the ligand vs solvent interaction. Our DFT calculations indicate an entropy effect that favors agostic W...H-C interaction over a solvent sigma C-H interaction by 8-10 kcal mol(-1).
Journal of the American Chemical Society, Aug 4, 2011
A detailed characterization of intermediates in water oxidation catalyzed by a mononuclear Ru pol... more A detailed characterization of intermediates in water oxidation catalyzed by a mononuclear Ru polypyridyl complex [Ru(II)-OH(2)](2+) (Ru = Ru complex with one 4-t-butyl-2,6-di-(1',8'-naphthyrid-2'-yl)-pyridine ligand and two 4-picoline ligands) has been carried out using electrochemistry, UV-vis and resonance Raman spectroscopy, pulse radiolysis, stopped flow, and electrospray ionization mass spectrometry (ESI-MS) with H(2)(18)O labeling experiments and theoretical calculations. The results reveal a number of intriguing properties of intermediates such as [Ru(IV)═O](2+) and [Ru(IV)-OO](2+). At pH > 2.9, two consecutive proton-coupled one-electron steps take place at the potential of the [Ru(III)-OH](2+)/[Ru(II)-OH(2)](2+) couple, which is equal to or higher than the potential of the [Ru(IV)═O](2+)/[Ru(III)-OH](2+) couple (i.e., the observation of a two-electron oxidation in cyclic voltammetry). At pH 1, the rate constant of the first one-electron oxidation by Ce(IV) is k(1) = 2 × 10(4) M(-1) s(-1). While pH-independent oxidation of [Ru(IV)═O](2+) takes place at 1420 mV vs NHE, bulk electrolysis of [Ru(II)-OH(2)](2+) at 1260 mV vs NHE at pH 1 (0.1 M triflic acid) and 1150 mV at pH 6 (10 mM sodium phosphate) yielded a red colored solution with a Coulomb count corresponding to a net four-electron oxidation. ESI-MS with labeling experiments clearly indicates that this species has an O-O bond. This species required an additional oxidation to liberate an oxygen molecule, and without any additional oxidant it completely decomposed slowly to form [Ru(II)-OOH](+) over 2 weeks. While there remains some conflicting evidence, we have assigned this species as (1)[Ru(IV)-η(2)-OO](2+) based on our electrochemical, spectroscopic, and theoretical observations alongside a previously reported analysis by T. J. Meyer's group (J. Am. Chem. Soc. 2010, 132, 1545-1557).
Inorganic Chemistry, Aug 17, 2009
The enthalpies of binding of a number of N-donor ligands to the complex Mo(P(i)Pr(3))(2)(CO)(3) i... more The enthalpies of binding of a number of N-donor ligands to the complex Mo(P(i)Pr(3))(2)(CO)(3) in toluene have been determined by solution calorimetry and equilibrium measurements. The measured binding enthalpies span a range of approximately 10 kcal mol(-1): DeltaH(binding) = -8.8 +/- 1.2 (N(2)-Mo(P(i)Pr(3))(2)(CO)(3)); -10.3 +/- 0.8 (N(2)); -11.2 +/- 0.4 (AdN(3) (Ad = 1-adamantyl)); -13.8 +/- 0.5 (N(2)CHSiMe(3)); -14.9 +/- 0.9 (pyrazine = pz); -14.8 +/- 0.6 (2,6-Me(2)pz); -15.5 +/- 1.8 (Me(2)NCN); -16.6 +/- 0.4 (CH(3)CN); -17.0 +/- 0.4 (pyridine); -17.5 +/- 0.8 ([4-CH(3)pz][PF(6)] (in tetrahydrofuran)); -17.6 +/- 0.4 (C(6)H(5)CN); -18.6 +/- 1.8 (N(2)CHC( horizontal lineO)OEt); and -19.3 +/- 2.5 kcal mol(-1) (pz)Mo(P(i)Pr(3))(2)(CO)(3)). The value for the isonitrile AdNC (-29.0 +/- 0.3) is 12.3 kcal mol(-1) more exothermic than that of the nitrile AdCN (-16.7 +/- 0.6 kcal mol(-1)). The enthalpies of binding of a range of arene nitrile ligands were also studied, and remarkably, most nitrile complexes were clustered within a 1 kcal mol(-1) range despite dramatic color changes and variation of nu(CN). Computed structural and spectroscopic parameters for the complexes Mo(P(i)Pr(3))(2)(CO)(3)L are in good agreement with experimental data. Computed binding enthalpies for Mo(P(i)Pr(3))(2)(CO)(3)L exhibit considerable scatter and are generally smaller compared to the experimental values, but relative agreement is reasonable. Computed enthalpies of binding using a larger basis set for Mo(PMe(3))(2)(CO)(3)L show a better fit to experimental data than that for Mo(P(i)Pr(3))(2)(CO)(3)L using a smaller basis set. Crystal structures of Mo(P(i)Pr(3))(2)(CO)(3)(AdCN), W(P(i)Pr(3))(2)(CO)(3)(Me(2)NCN), W(P(i)Pr(3))(2)(CO)(3)(2,6-F(2)C(6)H(3)CN), W(P(i)Pr(3))(2)(CO)(3)(2,4,6-Me(3)C(6)H(2)CN), W(P(i)Pr(3))(2)(CO)(3)(2,6-Me(2)pz), W(P(i)Pr(3))(2)(CO)(3)(AdCN), Mo(P(i)Pr(3))(2)(CO)(3)(AdNC), and W(P(i)Pr(3))(2)(CO)(3)(AdNC) are reported.
The Journal of Chemical Physics, Sep 15, 1990
The competition between desorption and relaxation of vibrationally excited CO adsorbed on a serie... more The competition between desorption and relaxation of vibrationally excited CO adsorbed on a series of model surfaces is examined theoretically using a classical mechanical description of the dynamics. The analogy between these processes and the vibrational predissociation of van der Waals molecules in the gas phase is emphasized. This study, which is restricted to a collinear arrangement of the adsorbate and surface atoms explores the effect of a systematic variation of the parameters of the simple model systems. The parameters varied include the surface Debye frequency and the strength of the adsorbate-surface interaction. Rate constants for the competing processes of predesorption, relaxation, and thermal desorption of both excited and relaxed adsorbate molecules are extracted as a function of the parameter values. Surface vibrations in models of NaCl and Si were found to accelerate the classical predesorption rate compared to the case of a stationary surface. This effect can be rationalized in terms of an impulsive collision mechanism. Raising the surface Debye frequency was found to enhance relaxation at the expense of predesorption. Mode mixing between adsorbate and surface modes appears to be a more important factor in this regard than Fermi resonance, or mode matching. Thermal desorption was not found to be a significant process in these classical calculations. Comparisons with parallel quantal calculations are made in the following paper.
The Journal of Physical Chemistry
ABSTRACT
The Journal of Physical Chemistry
ABSTRACT
The Journal of Physical Chemistry A
An analysis is provided of the subnanosecond dynamic solvation of ionic liquids in particular and... more An analysis is provided of the subnanosecond dynamic solvation of ionic liquids in particular and ionic solutions in general. It is our hypothesis that solvation relaxation in ionic fluids, in the nonglassy and nonsupercooled regimes, can be understood rather simply in terms of the dielectric spectra of the solvent. This idea is suggested by the comparison of imidazolium ionic liquids with their pure organic counterpart, butylimidazole (J. Phys. Chem. B 2004, 108, 10245-10255). It is borne out by a calculation of the solvation correlation time from frequency dependent dielectric data for the ionic liquid, ethylammonium nitrate, and for the electrolyte solution of methanol and sodium perchlorate. Very good agreement is obtained between these theoretically calculated solvation relaxation functions and those obtained from fluorescence upconversion spectroscopy. Our comparisons suggest that translational motion of ions may not be the predominant factor in short-time solvation of ionic fluids and that many tools and ideas about solvation dynamics in polar solvents can be adapted to ionic fluids.
Coordination Chemistry Reviews, 2006
Previous kinetic studies of photoinitiated transition metal–dinitrogen bond forming reactions are... more Previous kinetic studies of photoinitiated transition metal–dinitrogen bond forming reactions are reviewed, with an emphasis on room temperature reactivity, and in particular, the techniques of time-resolved infrared (TRIR) spectroscopy and UV–vis flash photolysis. Our recent results on the reactivity of the formally 16-electron, but agostically stabilized, complex, mer,trans-W(CO)3(PCy3)2 (W) (Cy=cyclohexyl) toward N2 in toluene and n-hexane solution are then discussed.
The Journal of Physical Chemistry C
... Lin Lin Jensen, ‡ James T. Muckerman,* † and Marshall D. Newton †. Chemistry Department, Broo... more ... Lin Lin Jensen, ‡ James T. Muckerman,* † and Marshall D. Newton †. Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, and Department of Chemistry, Penn State University, State College, Pennsylvania 16803. J. Phys. Chem. ...
Angewandte Chemie (International ed. in English), Jan 2, 2015
We prepared two geometric isomers of [Ir(tpy)(ppy)H](+) , previously proposed as a key intermedia... more We prepared two geometric isomers of [Ir(tpy)(ppy)H](+) , previously proposed as a key intermediate in the photochemical reduction of CO2 to CO, and characterized their notably different ground- and excited-state interactions with CO2 and their hydricities using experimental and computational methods. Only one isomer, C-trans-[Ir(tpy)(ppy)H](+) , reacts with CO2 to generate the formato complex in the ground state, consistent with its calculated hydricity. Under photocatalytic conditions in CH3 CN/TEOA, a common reactive C-trans-[Ir(tpy)(ppy)](0) species, irrespective of the starting isomer or monodentate ligand (such as hydride or Cl), reacts with CO2 and produces CO with the same catalytic efficiency.
The Journal of Physical Chemistry, 1979
ABSTRACT
In an attempt to tailor low-cost, precious-metal-free electrocatalysts for water electrolysis in ... more In an attempt to tailor low-cost, precious-metal-free electrocatalysts for water electrolysis in acid, molybdenum carbide (b-Mo 2 C) nanoparticles are prepared by in situ carburization of ammonium molybdate on carbon nanotubes and XC-72R carbon black without using any gaseous carbon source.