Jan Martinussen - Academia.edu (original) (raw)
Uploads
Papers by Jan Martinussen
Frontiers in microbiology, 2018
Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars ... more Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen . In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the synthesis of pyrimidines and in the -10 box of capsule operon promoter (P). By directed mutagenesis we showed that the point mutation in P was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased P activity and capsule amounts. Importantly, P expression is further decreased by mutating the first gene of the synthesis of pyrimidines, . In contrast, the absence...
Biotechnology journal, Jan 18, 2017
The non-dairy lactic acid bacterium Lactococcus lactis KF147 can utilize xylose as the sole energ... more The non-dairy lactic acid bacterium Lactococcus lactis KF147 can utilize xylose as the sole energy source. To assess whether KF147 could serve as a platform organism for converting second generation sugars into useful chemicals, we characterized growth and product formation for KF147 when grown on xylose. In a defined medium KF147 was found to co-metabolize xylose and arginine, resulting in bi-phasic growth. Especially at low xylose concentrations, arginine significantly improved growth rate. To facilitate further studies of the xylose metabolism, we eliminated arginine catabolism by deleting the arcA gene encoding the arginine deiminase. The fermentation product profile suggested two routes for xylose degradation, the phosphoketolase pathway and the pentose phosphate pathway. Inactivation of the phosphoketolase pathway redirected the entire flux through the pentose phosphate pathway whereas over-expression of phosphoketolase increased the flux through the phosphoketolase pathway. I...
Microbiology and molecular biology reviews : MMBR, Mar 1, 2017
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is sy... more Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of ...
Microbiology, 2016
We analysed the response of the model bacterium Lactococcus lactis to abrupt depletion of glucose... more We analysed the response of the model bacterium Lactococcus lactis to abrupt depletion of glucose after several generations of exponential growth. Glucose depletion resulted in a drastic drop in the energy charge accompanied by an extremely low GTP level and an almost total arrest of protein synthesis. Strikingly, the cell prioritized the continued synthesis of a few proteins, of which the ribosomal dimerization factor YfiA was the most highly expressed. Transcriptome analysis showed no immediate decrease in total mRNA levels despite the lowered nucleotide pools and only marginally increased levels of the yfiA transcript. Severe up-regulation of genes in the FruR, CcpA, ArgR and AhrC regulons were consistent with a downshift in carbon and energy source. Based upon the results, we suggest that transcription proceeded long enough to record the transcriptome changes from activation of the FruR, CcpA, ArgR and AhrC regulons, while protein synthesis stopped due to an extremely low GTP concentration emerging a few minutes after glucose depletion. The yfiA deletion mutant exhibited a longer lag phase upon replenishment of glucose and a faster death rate after prolonged starvation supporting that YfiA-mediated ribosomal dimerization is important for keeping long-term starved cells viable and competent for growth initiation.
Journal of Bacteriology
We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor... more We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) CytR selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the cAMP-CRP complex; (iii) introduction of point mutations in either CRP target resulted in loss of CytR regulation; and (iv) regulation by CytR of deletion mutants lacking CRP-2 could be specifically reestablished by increasing the intracellular concentration of CytR. These findings indicate that both CRP targets are required for efficient CytR repression of deoCp2. Models for the action of Cyt...
Three genes encoding enzymes involved in the biosynthesis of pyrimidines have been found to const... more Three genes encoding enzymes involved in the biosynthesis of pyrimidines have been found to constitute an operon inLactococcus lactis. Two of the genes are the well-knownpyrgenespyrDbandpyrF, encoding dihydro- orotate dehydrogenase and orotidine monophosphate decarboxylase, respectively. The third gene encodes a protein which was shown to be necessary for the activity of thepyrDb-encoded dihydroorotate dehydrogenase; we propose to name the genepyrK.
PLoS biology, 2015
Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation o... more Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifur...
Journal of bacteriology, 1990
We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor... more We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) CytR selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the cAMP-CRP complex; (iii) introduction of point mutations in either CRP target resulted in loss of CytR regulation; and (iv) regulation by CytR of deletion mutants lacking CRP-2 could be specifically reestablished by increasing the intracellular concentration of CytR. These findings indicate that both CRP targets are required for efficient CytR repression of deoCp2. Models for the action of Cyt...
The New biologist, 1990
The seven members of the hok killer gene family in Gram-negative bacteria are described here. The... more The seven members of the hok killer gene family in Gram-negative bacteria are described here. The members of this gene family have been sequenced and include hok/sok from plasmid R1, flm and srnB from plasmid F, pnd from plasmids R483 and R16, and gef and relF, which are located on the Escherichia coli chromosome. The killer proteins encoded by these loci are highly toxic polypeptides of 50 to 52 amino acids. The proteins kill the cells from the inside by interfering with a vital function in the cell membrane. On the basis of their relatedness, the killer proteins and their corresponding loci are divided into four subfamilies. The members of one subfamily, hok/sok and flm, mediate plasmid maintenance by killing plasmid-free cells. The pnd and srnB subfamilies were discovered through their abilities to cause membrane damage and degradation of stable RNA. gef and relF, which constitute the chromosomal subfamily, were found because of their sequence similarity at the DNA and protein le...
Microbiology (Reading, England), 2014
Multi-stress resistance is a widely documented and fascinating phenotype of lactococci where sing... more Multi-stress resistance is a widely documented and fascinating phenotype of lactococci where single mutations, preferentially in genes involved in nucleotide metabolism and phosphate uptake, result in elevated tolerance to multiple stresses simultaneously. In this report, we have analysed the metabolic basis behind this multi-stress-resistance phenotype in Lactococcus lactis subsp. cremoris MG1363 using acid stress as a model of multi-stress resistance. Surprisingly, we found that L. lactis MG1363 is fully resistant to pH 3.0 in the chemically defined SA medium, contrary to its sensitivity in the rich and complex M17 medium. When salvage of purines and subsequent conversion to GTP was permitted in various genetic backgrounds of L. lactis MG1363, the cells became sensitive to acid stress, indicating that an excess of guanine nucleotides induces stress sensitivity. The addition of phosphate to the acid-stress medium increased the stress sensitivity of L. lactis MG1363. It is also show...
The Journal of biological chemistry, Jan 12, 2001
The pyrG gene of Lactococcus lactis subsp. cremoris, encoding CTP synthase, has been cloned and s... more The pyrG gene of Lactococcus lactis subsp. cremoris, encoding CTP synthase, has been cloned and sequenced. It is flanked upstream by an open reading frame showing homology to several aminotransferases and downstream by an open reading frame of unknown function. L. lactis strains harboring disrupted pyrG alleles were constructed. These mutants required cytidine for growth, proving that in L. lactis, the pyrG product is the only enzyme responsible for the amination of UTP to CTP. In contrast to the situation in Escherichia coli, an L. lactis pyrG mutant could be constructed in the presence of a functional cdd gene encoding cytidine deaminase. A characterization of the enzyme revealed similar properties as found for CTP synthases from other organisms. However, unlike the majority of CTP synthases the lactococcal enzyme can convert dUTP to dCTP, although a half saturation concentration of 0.6 mm for dUTP makes it unlikely that this reaction plays a significant physiological role. As for...
Frontiers in microbiology, 2018
Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars ... more Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen . In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the synthesis of pyrimidines and in the -10 box of capsule operon promoter (P). By directed mutagenesis we showed that the point mutation in P was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased P activity and capsule amounts. Importantly, P expression is further decreased by mutating the first gene of the synthesis of pyrimidines, . In contrast, the absence...
Biotechnology journal, Jan 18, 2017
The non-dairy lactic acid bacterium Lactococcus lactis KF147 can utilize xylose as the sole energ... more The non-dairy lactic acid bacterium Lactococcus lactis KF147 can utilize xylose as the sole energy source. To assess whether KF147 could serve as a platform organism for converting second generation sugars into useful chemicals, we characterized growth and product formation for KF147 when grown on xylose. In a defined medium KF147 was found to co-metabolize xylose and arginine, resulting in bi-phasic growth. Especially at low xylose concentrations, arginine significantly improved growth rate. To facilitate further studies of the xylose metabolism, we eliminated arginine catabolism by deleting the arcA gene encoding the arginine deiminase. The fermentation product profile suggested two routes for xylose degradation, the phosphoketolase pathway and the pentose phosphate pathway. Inactivation of the phosphoketolase pathway redirected the entire flux through the pentose phosphate pathway whereas over-expression of phosphoketolase increased the flux through the phosphoketolase pathway. I...
Microbiology and molecular biology reviews : MMBR, Mar 1, 2017
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is sy... more Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of ...
Microbiology, 2016
We analysed the response of the model bacterium Lactococcus lactis to abrupt depletion of glucose... more We analysed the response of the model bacterium Lactococcus lactis to abrupt depletion of glucose after several generations of exponential growth. Glucose depletion resulted in a drastic drop in the energy charge accompanied by an extremely low GTP level and an almost total arrest of protein synthesis. Strikingly, the cell prioritized the continued synthesis of a few proteins, of which the ribosomal dimerization factor YfiA was the most highly expressed. Transcriptome analysis showed no immediate decrease in total mRNA levels despite the lowered nucleotide pools and only marginally increased levels of the yfiA transcript. Severe up-regulation of genes in the FruR, CcpA, ArgR and AhrC regulons were consistent with a downshift in carbon and energy source. Based upon the results, we suggest that transcription proceeded long enough to record the transcriptome changes from activation of the FruR, CcpA, ArgR and AhrC regulons, while protein synthesis stopped due to an extremely low GTP concentration emerging a few minutes after glucose depletion. The yfiA deletion mutant exhibited a longer lag phase upon replenishment of glucose and a faster death rate after prolonged starvation supporting that YfiA-mediated ribosomal dimerization is important for keeping long-term starved cells viable and competent for growth initiation.
Journal of Bacteriology
We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor... more We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) CytR selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the cAMP-CRP complex; (iii) introduction of point mutations in either CRP target resulted in loss of CytR regulation; and (iv) regulation by CytR of deletion mutants lacking CRP-2 could be specifically reestablished by increasing the intracellular concentration of CytR. These findings indicate that both CRP targets are required for efficient CytR repression of deoCp2. Models for the action of Cyt...
Three genes encoding enzymes involved in the biosynthesis of pyrimidines have been found to const... more Three genes encoding enzymes involved in the biosynthesis of pyrimidines have been found to constitute an operon inLactococcus lactis. Two of the genes are the well-knownpyrgenespyrDbandpyrF, encoding dihydro- orotate dehydrogenase and orotidine monophosphate decarboxylase, respectively. The third gene encodes a protein which was shown to be necessary for the activity of thepyrDb-encoded dihydroorotate dehydrogenase; we propose to name the genepyrK.
PLoS biology, 2015
Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation o... more Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifur...
Journal of bacteriology, 1990
We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor... more We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) CytR selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the cAMP-CRP complex; (iii) introduction of point mutations in either CRP target resulted in loss of CytR regulation; and (iv) regulation by CytR of deletion mutants lacking CRP-2 could be specifically reestablished by increasing the intracellular concentration of CytR. These findings indicate that both CRP targets are required for efficient CytR repression of deoCp2. Models for the action of Cyt...
The New biologist, 1990
The seven members of the hok killer gene family in Gram-negative bacteria are described here. The... more The seven members of the hok killer gene family in Gram-negative bacteria are described here. The members of this gene family have been sequenced and include hok/sok from plasmid R1, flm and srnB from plasmid F, pnd from plasmids R483 and R16, and gef and relF, which are located on the Escherichia coli chromosome. The killer proteins encoded by these loci are highly toxic polypeptides of 50 to 52 amino acids. The proteins kill the cells from the inside by interfering with a vital function in the cell membrane. On the basis of their relatedness, the killer proteins and their corresponding loci are divided into four subfamilies. The members of one subfamily, hok/sok and flm, mediate plasmid maintenance by killing plasmid-free cells. The pnd and srnB subfamilies were discovered through their abilities to cause membrane damage and degradation of stable RNA. gef and relF, which constitute the chromosomal subfamily, were found because of their sequence similarity at the DNA and protein le...
Microbiology (Reading, England), 2014
Multi-stress resistance is a widely documented and fascinating phenotype of lactococci where sing... more Multi-stress resistance is a widely documented and fascinating phenotype of lactococci where single mutations, preferentially in genes involved in nucleotide metabolism and phosphate uptake, result in elevated tolerance to multiple stresses simultaneously. In this report, we have analysed the metabolic basis behind this multi-stress-resistance phenotype in Lactococcus lactis subsp. cremoris MG1363 using acid stress as a model of multi-stress resistance. Surprisingly, we found that L. lactis MG1363 is fully resistant to pH 3.0 in the chemically defined SA medium, contrary to its sensitivity in the rich and complex M17 medium. When salvage of purines and subsequent conversion to GTP was permitted in various genetic backgrounds of L. lactis MG1363, the cells became sensitive to acid stress, indicating that an excess of guanine nucleotides induces stress sensitivity. The addition of phosphate to the acid-stress medium increased the stress sensitivity of L. lactis MG1363. It is also show...
The Journal of biological chemistry, Jan 12, 2001
The pyrG gene of Lactococcus lactis subsp. cremoris, encoding CTP synthase, has been cloned and s... more The pyrG gene of Lactococcus lactis subsp. cremoris, encoding CTP synthase, has been cloned and sequenced. It is flanked upstream by an open reading frame showing homology to several aminotransferases and downstream by an open reading frame of unknown function. L. lactis strains harboring disrupted pyrG alleles were constructed. These mutants required cytidine for growth, proving that in L. lactis, the pyrG product is the only enzyme responsible for the amination of UTP to CTP. In contrast to the situation in Escherichia coli, an L. lactis pyrG mutant could be constructed in the presence of a functional cdd gene encoding cytidine deaminase. A characterization of the enzyme revealed similar properties as found for CTP synthases from other organisms. However, unlike the majority of CTP synthases the lactococcal enzyme can convert dUTP to dCTP, although a half saturation concentration of 0.6 mm for dUTP makes it unlikely that this reaction plays a significant physiological role. As for...