Jane Armstrong - Academia.edu (original) (raw)
Papers by Jane Armstrong
Cells, 2021
Acute pancreatitis (AP) is a severe and potentially fatal disease caused predominantly by alcohol... more Acute pancreatitis (AP) is a severe and potentially fatal disease caused predominantly by alcohol excess and gallstones, which lacks a specific therapy. The role of Receptor-Interacting Protein Kinase 1 (RIPK1), a key component of programmed necrosis (Necroptosis), is unclear in AP. We assessed the effects of RIPK1 inhibitor Necrostatin-1 (Nec-1) and RIPK1 modification (RIPK1K45A: kinase dead) in bile acid (TLCS-AP), alcoholic (FAEE-AP) and caerulein hyperstimulation (CER-AP) mouse models. Involvement of collateral Nec-1 target indoleamine 2,3-dioxygenase (IDO) was probed with the inhibitor Epacadostat (EPA). Effects of Nec-1 and RIPK1K45A were also compared on pancreatic acinar cell (PAC) fate in vitro and underlying mechanisms explored. Nec-1 markedly ameliorated histological and biochemical changes in all models. However, these were only partially reduced or unchanged in RIPK1K45A mice. Inhibition of IDO with EPA was protective in TLCS-AP. Both Nec-1 and RIPK1K45A modification in...
Cells, 2020
Acute pancreatitis is a frequent disease that lacks specific drug treatment. Unravelling the mole... more Acute pancreatitis is a frequent disease that lacks specific drug treatment. Unravelling the molecular mechanisms of acute pancreatitis is essential for the development of new therapeutics. Several inducers of acute pancreatitis trigger sustained Ca2+ increases in the cytosol and mitochondria of pancreatic acinar cells. The mitochondrial calcium uniporter (MCU) mediates mitochondrial Ca2+ uptake that regulates bioenergetics and plays an important role in cell survival, damage and death. Aberrant Ca2+ signaling and mitochondrial damage in pancreatic acinar cells have been implicated in the initiation of acute pancreatitis. The primary aim of this study was to assess the involvement of the MCU in experimental acute pancreatitis. We found that pancreatic acinar cells from MCU−/− mice display dramatically reduced mitochondrial Ca2+ uptake. This is consistent with the drastic changes of stimulus-metabolism coupling, manifested by the reduction of mitochondrial NADH/FAD+ responses to chol...
International Journal of Molecular Sciences, 2019
Mitochondrial dysfunction is a core feature of acute pancreatitis, a severe disease in which oxid... more Mitochondrial dysfunction is a core feature of acute pancreatitis, a severe disease in which oxidative stress is elevated. Mitochondrial targeting of antioxidants is a potential therapeutic strategy for this and other diseases, although thus far mixed results have been reported. We investigated the effects of mitochondrial targeting with the antioxidant MitoQ on pancreatic acinar cell bioenergetics, adenosine triphosphate (ATP) production and cell fate, in comparison with the non-antioxidant control decyltriphenylphosphonium bromide (DecylTPP) and general antioxidant N-acetylcysteine (NAC). MitoQ (µM range) and NAC (mM range) caused sustained elevations of basal respiration and the inhibition of spare respiratory capacity, which was attributable to an antioxidant action since these effects were minimal with DecylTPP. Although MitoQ but not DecylTPP decreased cellular NADH levels, mitochondrial ATP turnover capacity and cellular ATP concentrations were markedly reduced by both MitoQ ...
Frontiers in physiology, 2018
FF-ATP synthase inhibitory factor 1 (IF1) inhibits the reverse mode of FF-ATP synthase, and there... more FF-ATP synthase inhibitory factor 1 (IF1) inhibits the reverse mode of FF-ATP synthase, and therefore protects cellular ATP content at the expense of accelerated loss of mitochondrial membrane potential (ΔΨm). There is considerable variability in IF1 expression and its influence on bioenergetics between different cell types. High levels of IF1 in a number of cancers have been linked to increased glycolysis, resistance to cell death, increased migration and proliferation. However, neither the expression nor role of IF1 in the normal pancreas or in pancreatic cancer has been characterized. In this study, we found that pancreatic ductal adenocarcinoma (PDAC) patients express higher levels of IF1 in cancerous cells than in pancreatic acinar cells (PACs). PDAC cell lines have a higher IF1 content and IF1/ATP synthase ratio than PACs. The observed differences are consistent with the ability of the respective cell types to maintain ΔΨm and ATP levels in conditions of chemical hypoxia. Acin...
Antioxidants & Redox Signaling, 2015
Journal of Clinical Medicine, 2019
Acute pancreatitis (AP) is a debilitating, sometimes fatal disease, marked by local injury and sy... more Acute pancreatitis (AP) is a debilitating, sometimes fatal disease, marked by local injury and systemic inflammation. Mitochondrial dysfunction is a central feature of pancreatic damage in AP, however, its involvement in circulating blood cell subtypes is unknown. This study compared mitochondrial bioenergetics in circulating leukocytes from AP patients and healthy volunteers: 15 patients with mild to severe AP were compared to 10 healthy controls. Monocytes, lymphocytes and neutrophils were isolated using magnetic activated cell sorting and mitochondrial bioenergetics profiles of the cell populations determined using a Seahorse XF24 flux analyser. Rates of oxygen consumption (OCR) and extracellular acidification (ECAR) under conditions of electron transport chain (ETC) inhibition (“stress” test) informed respiratory and glycolytic parameters, respectively. Phorbol ester stimulation was used to trigger the oxidative burst. Basal OCR in all blood cell subtypes was similar in AP patie...
Current Issues in Molecular Biology
The development of K-Ras independence may explain the failure of targeted therapy for pancreatic ... more The development of K-Ras independence may explain the failure of targeted therapy for pancreatic cancer (PC). In this paper, active N as well as K-Ras was shown in all human cell lines tested. In a cell line dependent on mutant K-Ras, it was shown that depleting K-Ras reduced total Ras activity, while cell lines described as independent had no significant decline in total Ras activity. The knockdown of N-Ras showed it had an important role in controlling the relative level of oxidative metabolism, but only K-Ras depletion caused a decrease in G2 cyclins. Proteasome inhibition reversed this, and other targets of APC/c were also decreased by K-Ras depletion. K-Ras depletion did not cause an increase in ubiquitinated G2 cyclins but instead caused exit from the G2 phase to slow relative to completion of the S-phase, suggesting that the mutant K-Ras may inhibit APC/c prior to anaphase and stabilise G2 cyclins independently of this. We propose that, during tumorigenesis, cancer cells expr...
BMC Infectious Diseases, 2021
Background SARS-CoV-2 is frequently shed in the stool of patients hospitalised with COVID-19. The... more Background SARS-CoV-2 is frequently shed in the stool of patients hospitalised with COVID-19. The extent of faecal shedding of SARS-CoV-2 among individuals in the community, and its potential to contribute to spread of disease, is unknown. Methods In this prospective, observational cohort study among households in Liverpool, UK, participants underwent weekly nasal/throat swabbing to detect SARS-CoV-2 virus, over a 12-week period from enrolment starting July 2020. Participants that tested positive for SARS-CoV-2 were asked to provide a stool sample three and 14 days later. In addition, in October and November 2020, during a period of high community transmission, stool sampling was undertaken to determine the prevalence of SARS-CoV-2 faecal shedding among all study participants. SARS-CoV-2 RNA was detected using Real-Time PCR. Results A total of 434 participants from 176 households were enrolled. Eighteen participants (4.2%: 95% confidence interval [CI] 2.5–6.5%) tested positive for S...
Gut, 2014
Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxyle... more Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. Intracellular calcium ([Ca(2+)](C)), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. Inhibition of OME with 4-MP converted predominantly transient [Ca(2...
Pancreatology, 2013
Percent body fat and fat mass decreased by 4% and 1%, respectively (P 0.05). Training induced 88%... more Percent body fat and fat mass decreased by 4% and 1%, respectively (P 0.05). Training induced 88%, 69%, and 21% increases in CD34+/VEGFR2+, CD62E+, and CD14+/CD31+ cells, respectively (all P 0.05). CONCLUSIONS: These findings indicate that mtAO supplementation does not affect training-induced adaptations of different CAC populations in young healthy men. Importantly, our data demonstrate for the first time that short-term cycle training enhances CD34+/VEGFR2+, CD62E+, and CD14+/CD31+ CACs.
In Vitro Cellular & Developmental Biology - Animal, 2014
The Caco-2 cell model is widely used as a model of colon cancer and small intestinal epithelium b... more The Caco-2 cell model is widely used as a model of colon cancer and small intestinal epithelium but, like most cell models, is cultured in atmospheric oxygen conditions (∼21%). This does not reflect the physiological oxygen range found in the colon. In this study, we investigated the effect of adapting the Caco-2 cell line to routine culturing in a physiological oxygen (5%) environment. Under these conditions, cells maintain a number of key characteristics of the Caco-2 model, such as increased formation of tight junctions and alkaline phosphatase expression over the differentiation period and maintenance of barrier function. However, these cells exhibit differential oxidative metabolism, proliferate less and become larger during differentiation. In addition, these cells were more sensitive to cannabidiol-induced antiproliferative actions through changes in cellular energetics: from a drop of oxygen consumption rate and loss of mitochondrial membrane integrity in cells treated under atmospheric conditions to an increase in reactive oxygen species in intact mitochondria in cells treated under low-oxygen conditions. Inclusion of an additional physiological parameter, sodium butyrate, into the medium revealed a cannabidiol-induced proliferative response at low doses. These effects could impact on its development as an anticancer therapeutic, but overall, the data supports the principle that culturing cells in microenvironments that more closely mimic the in vivo conditions is important for drug screening and mechanism of action studies.
Cells, 2021
Acute pancreatitis (AP) is a severe and potentially fatal disease caused predominantly by alcohol... more Acute pancreatitis (AP) is a severe and potentially fatal disease caused predominantly by alcohol excess and gallstones, which lacks a specific therapy. The role of Receptor-Interacting Protein Kinase 1 (RIPK1), a key component of programmed necrosis (Necroptosis), is unclear in AP. We assessed the effects of RIPK1 inhibitor Necrostatin-1 (Nec-1) and RIPK1 modification (RIPK1K45A: kinase dead) in bile acid (TLCS-AP), alcoholic (FAEE-AP) and caerulein hyperstimulation (CER-AP) mouse models. Involvement of collateral Nec-1 target indoleamine 2,3-dioxygenase (IDO) was probed with the inhibitor Epacadostat (EPA). Effects of Nec-1 and RIPK1K45A were also compared on pancreatic acinar cell (PAC) fate in vitro and underlying mechanisms explored. Nec-1 markedly ameliorated histological and biochemical changes in all models. However, these were only partially reduced or unchanged in RIPK1K45A mice. Inhibition of IDO with EPA was protective in TLCS-AP. Both Nec-1 and RIPK1K45A modification in...
Cells, 2020
Acute pancreatitis is a frequent disease that lacks specific drug treatment. Unravelling the mole... more Acute pancreatitis is a frequent disease that lacks specific drug treatment. Unravelling the molecular mechanisms of acute pancreatitis is essential for the development of new therapeutics. Several inducers of acute pancreatitis trigger sustained Ca2+ increases in the cytosol and mitochondria of pancreatic acinar cells. The mitochondrial calcium uniporter (MCU) mediates mitochondrial Ca2+ uptake that regulates bioenergetics and plays an important role in cell survival, damage and death. Aberrant Ca2+ signaling and mitochondrial damage in pancreatic acinar cells have been implicated in the initiation of acute pancreatitis. The primary aim of this study was to assess the involvement of the MCU in experimental acute pancreatitis. We found that pancreatic acinar cells from MCU−/− mice display dramatically reduced mitochondrial Ca2+ uptake. This is consistent with the drastic changes of stimulus-metabolism coupling, manifested by the reduction of mitochondrial NADH/FAD+ responses to chol...
International Journal of Molecular Sciences, 2019
Mitochondrial dysfunction is a core feature of acute pancreatitis, a severe disease in which oxid... more Mitochondrial dysfunction is a core feature of acute pancreatitis, a severe disease in which oxidative stress is elevated. Mitochondrial targeting of antioxidants is a potential therapeutic strategy for this and other diseases, although thus far mixed results have been reported. We investigated the effects of mitochondrial targeting with the antioxidant MitoQ on pancreatic acinar cell bioenergetics, adenosine triphosphate (ATP) production and cell fate, in comparison with the non-antioxidant control decyltriphenylphosphonium bromide (DecylTPP) and general antioxidant N-acetylcysteine (NAC). MitoQ (µM range) and NAC (mM range) caused sustained elevations of basal respiration and the inhibition of spare respiratory capacity, which was attributable to an antioxidant action since these effects were minimal with DecylTPP. Although MitoQ but not DecylTPP decreased cellular NADH levels, mitochondrial ATP turnover capacity and cellular ATP concentrations were markedly reduced by both MitoQ ...
Frontiers in physiology, 2018
FF-ATP synthase inhibitory factor 1 (IF1) inhibits the reverse mode of FF-ATP synthase, and there... more FF-ATP synthase inhibitory factor 1 (IF1) inhibits the reverse mode of FF-ATP synthase, and therefore protects cellular ATP content at the expense of accelerated loss of mitochondrial membrane potential (ΔΨm). There is considerable variability in IF1 expression and its influence on bioenergetics between different cell types. High levels of IF1 in a number of cancers have been linked to increased glycolysis, resistance to cell death, increased migration and proliferation. However, neither the expression nor role of IF1 in the normal pancreas or in pancreatic cancer has been characterized. In this study, we found that pancreatic ductal adenocarcinoma (PDAC) patients express higher levels of IF1 in cancerous cells than in pancreatic acinar cells (PACs). PDAC cell lines have a higher IF1 content and IF1/ATP synthase ratio than PACs. The observed differences are consistent with the ability of the respective cell types to maintain ΔΨm and ATP levels in conditions of chemical hypoxia. Acin...
Antioxidants & Redox Signaling, 2015
Journal of Clinical Medicine, 2019
Acute pancreatitis (AP) is a debilitating, sometimes fatal disease, marked by local injury and sy... more Acute pancreatitis (AP) is a debilitating, sometimes fatal disease, marked by local injury and systemic inflammation. Mitochondrial dysfunction is a central feature of pancreatic damage in AP, however, its involvement in circulating blood cell subtypes is unknown. This study compared mitochondrial bioenergetics in circulating leukocytes from AP patients and healthy volunteers: 15 patients with mild to severe AP were compared to 10 healthy controls. Monocytes, lymphocytes and neutrophils were isolated using magnetic activated cell sorting and mitochondrial bioenergetics profiles of the cell populations determined using a Seahorse XF24 flux analyser. Rates of oxygen consumption (OCR) and extracellular acidification (ECAR) under conditions of electron transport chain (ETC) inhibition (“stress” test) informed respiratory and glycolytic parameters, respectively. Phorbol ester stimulation was used to trigger the oxidative burst. Basal OCR in all blood cell subtypes was similar in AP patie...
Current Issues in Molecular Biology
The development of K-Ras independence may explain the failure of targeted therapy for pancreatic ... more The development of K-Ras independence may explain the failure of targeted therapy for pancreatic cancer (PC). In this paper, active N as well as K-Ras was shown in all human cell lines tested. In a cell line dependent on mutant K-Ras, it was shown that depleting K-Ras reduced total Ras activity, while cell lines described as independent had no significant decline in total Ras activity. The knockdown of N-Ras showed it had an important role in controlling the relative level of oxidative metabolism, but only K-Ras depletion caused a decrease in G2 cyclins. Proteasome inhibition reversed this, and other targets of APC/c were also decreased by K-Ras depletion. K-Ras depletion did not cause an increase in ubiquitinated G2 cyclins but instead caused exit from the G2 phase to slow relative to completion of the S-phase, suggesting that the mutant K-Ras may inhibit APC/c prior to anaphase and stabilise G2 cyclins independently of this. We propose that, during tumorigenesis, cancer cells expr...
BMC Infectious Diseases, 2021
Background SARS-CoV-2 is frequently shed in the stool of patients hospitalised with COVID-19. The... more Background SARS-CoV-2 is frequently shed in the stool of patients hospitalised with COVID-19. The extent of faecal shedding of SARS-CoV-2 among individuals in the community, and its potential to contribute to spread of disease, is unknown. Methods In this prospective, observational cohort study among households in Liverpool, UK, participants underwent weekly nasal/throat swabbing to detect SARS-CoV-2 virus, over a 12-week period from enrolment starting July 2020. Participants that tested positive for SARS-CoV-2 were asked to provide a stool sample three and 14 days later. In addition, in October and November 2020, during a period of high community transmission, stool sampling was undertaken to determine the prevalence of SARS-CoV-2 faecal shedding among all study participants. SARS-CoV-2 RNA was detected using Real-Time PCR. Results A total of 434 participants from 176 households were enrolled. Eighteen participants (4.2%: 95% confidence interval [CI] 2.5–6.5%) tested positive for S...
Gut, 2014
Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxyle... more Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. Intracellular calcium ([Ca(2+)](C)), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. Inhibition of OME with 4-MP converted predominantly transient [Ca(2...
Pancreatology, 2013
Percent body fat and fat mass decreased by 4% and 1%, respectively (P 0.05). Training induced 88%... more Percent body fat and fat mass decreased by 4% and 1%, respectively (P 0.05). Training induced 88%, 69%, and 21% increases in CD34+/VEGFR2+, CD62E+, and CD14+/CD31+ cells, respectively (all P 0.05). CONCLUSIONS: These findings indicate that mtAO supplementation does not affect training-induced adaptations of different CAC populations in young healthy men. Importantly, our data demonstrate for the first time that short-term cycle training enhances CD34+/VEGFR2+, CD62E+, and CD14+/CD31+ CACs.
In Vitro Cellular & Developmental Biology - Animal, 2014
The Caco-2 cell model is widely used as a model of colon cancer and small intestinal epithelium b... more The Caco-2 cell model is widely used as a model of colon cancer and small intestinal epithelium but, like most cell models, is cultured in atmospheric oxygen conditions (∼21%). This does not reflect the physiological oxygen range found in the colon. In this study, we investigated the effect of adapting the Caco-2 cell line to routine culturing in a physiological oxygen (5%) environment. Under these conditions, cells maintain a number of key characteristics of the Caco-2 model, such as increased formation of tight junctions and alkaline phosphatase expression over the differentiation period and maintenance of barrier function. However, these cells exhibit differential oxidative metabolism, proliferate less and become larger during differentiation. In addition, these cells were more sensitive to cannabidiol-induced antiproliferative actions through changes in cellular energetics: from a drop of oxygen consumption rate and loss of mitochondrial membrane integrity in cells treated under atmospheric conditions to an increase in reactive oxygen species in intact mitochondria in cells treated under low-oxygen conditions. Inclusion of an additional physiological parameter, sodium butyrate, into the medium revealed a cannabidiol-induced proliferative response at low doses. These effects could impact on its development as an anticancer therapeutic, but overall, the data supports the principle that culturing cells in microenvironments that more closely mimic the in vivo conditions is important for drug screening and mechanism of action studies.