Janet Allen - Academia.edu (original) (raw)
Uploads
Papers by Janet Allen
Journal of Mechanical Design, 2012
In this paper, the opportunities for managing uncertainty in simulation-based design of multiscal... more In this paper, the opportunities for managing uncertainty in simulation-based design of multiscale systems are explored using constructs from information management and robust design. A comprehensive multiscale design problem, the concurrent design of material and product is used to demonstrate our approach. The desired accuracy of the simulated performance is determined by the trade-off between computational cost for model refinement and the benefits of mitigated uncertainty from the refined models. Our approach consists of integrating: (i) a robust design method for multiscale systems and (ii) an improvement potential based approach for quantifying the cost-benefit trade-off for reducing uncertainty in simulation models. Specifically, our approach focuses on allocating resources for reducing model parameter uncertainty arising due to insufficient data from simulation models. Using this approach, system level designers can efficiently allocate resources for sequential simulation mo...
Acta Materialia, 2003
Quantitative microstructure characterization to better understand processing-microstructure-prope... more Quantitative microstructure characterization to better understand processing-microstructure-property correlations is of considerable interest in plasma sprayed coating research. This paper quantifies, by means of small-angle neutron scattering (SANS) data, microstructure (porosity, opening dimensions, orientation and morphologies) in plasma sprayed partially-stabilized zirconia (PSZ) coatings, primarily used as thermal barrier coatings. We report on the investigation of the influence of feedstock characteristics on microstructure and establish its influence on the resultant thermal and mechanical properties. The microstructural parameters determined by SANS studies are then assembled into a preliminary model to develop a predictive capability for estimating the properties of these coatings. Thermal conductivity and elastic modulus were predicted using finite element analysis and ultimately compared to experimental values.
Journal of Mechanical Design, 2012
In this paper, the opportunities for managing uncertainty in simulation-based design of multiscal... more In this paper, the opportunities for managing uncertainty in simulation-based design of multiscale systems are explored using constructs from information management and robust design. A comprehensive multiscale design problem, the concurrent design of material and product is used to demonstrate our approach. The desired accuracy of the simulated performance is determined by the trade-off between computational cost for model refinement and the benefits of mitigated uncertainty from the refined models. Our approach consists of integrating: (i) a robust design method for multiscale systems and (ii) an improvement potential based approach for quantifying the cost-benefit trade-off for reducing uncertainty in simulation models. Specifically, our approach focuses on allocating resources for reducing model parameter uncertainty arising due to insufficient data from simulation models. Using this approach, system level designers can efficiently allocate resources for sequential simulation mo...
Acta Materialia, 2003
Quantitative microstructure characterization to better understand processing-microstructure-prope... more Quantitative microstructure characterization to better understand processing-microstructure-property correlations is of considerable interest in plasma sprayed coating research. This paper quantifies, by means of small-angle neutron scattering (SANS) data, microstructure (porosity, opening dimensions, orientation and morphologies) in plasma sprayed partially-stabilized zirconia (PSZ) coatings, primarily used as thermal barrier coatings. We report on the investigation of the influence of feedstock characteristics on microstructure and establish its influence on the resultant thermal and mechanical properties. The microstructural parameters determined by SANS studies are then assembled into a preliminary model to develop a predictive capability for estimating the properties of these coatings. Thermal conductivity and elastic modulus were predicted using finite element analysis and ultimately compared to experimental values.