Jasim Mahdi - Academia.edu (original) (raw)

Papers by Jasim Mahdi

Research paper thumbnail of Natural Convection Heat Transfer in an Inclined Open-Ended Square Cavity with Partially Active Side Wall

This paper reports a numerical study of flow behaviors and natural convection heat transfer chara... more This paper reports a numerical study of flow behaviors and natural convection heat transfer characteristics in an inclined open-ended square cavity filled with air. The cavity is formed by adiabatic top and bottom walls and partially heated vertical wall facing the opening. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. A computer program to solve mathematical model has been developed and written as a code for MATLAB software. Results in the form of streamlines, isotherms, and average Nusselt number, are obtained for a wide range of Rayleigh numbers 10 3-10 6 with Prandtl number 0.71 (air) , inclination angles measured from the horizontal direction 0º-60º , dimensionless lengths of the active part 0.4-1 ,and different locations of the thermally active part at the vertical wall. The Results show that heat transfer rate is high when the length of the...

Research paper thumbnail of Numerical Analysis of Double Diffusive Laminar Natural Convection in a Right Angle Triangular Solar Collector

A numerical study of the double-diffusive laminar natural convection in a right triangular solar ... more A numerical study of the double-diffusive laminar natural convection in a right triangular solar collector has been investigated in present work. The base (absorber) and glass cover of the collector are isothermal and isoconcentration surfaces, while the vertical wall is considered adiabatic and impermeable. Both aiding and opposing buoyancy forces have been studied. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. Computer code for MATLAB software has been developed and written to solve mathematical model. Results in the form of streamlines, isotherms, isoconcentration, average Nusselt, and average Sherwood number, are presented for wide range of the buoyancy ratio , angle of inclined glass cover with horizontal coordinate , Lewis number , thermal Rayleigh number , and Prandtl number. The results show that above parameters have strong influences on ...

Research paper thumbnail of Improved melting of latent heat storage via porous medium and uniform Joule heat generation

Journal of Energy Storage, 2020

Abstract To enhance the rate of heat transfer in phase change materials (PCM), high conductivity ... more Abstract To enhance the rate of heat transfer in phase change materials (PCM), high conductivity porous materials have been widely used recently as a promising method. This study introduces a novel approach for improving melting of PCM by incorporating uniform Joule heat generation with the porous structure compared to central heat generation. Different cases based on the heater-in foam configuration under the same heat generation rate are numerically verified and compared with the case of using the central heating element, which the heat transfer in the domain enhances by the porous medium. The effects of pore density and rate of heat generation are explored using the thermal non-equilibrium model to better deal with the interstitial heat transfer between the internal heat-generated-in-foam and the PCM. For the case with the central heating element, the effects of heater dimensions as well as the rate of heat generation are also investigated. The results show that the uniform heat generation from the porous structure can substantially reduce the melting time. Applying 100 kW/m3 for the rate of heat generation reduces the melting time by 21% compared with the best case of the localised heater. Meanwhile, applying higher pore-density foam does not bring any significant effect due to the uniform distribution of the heat generation. The results also show a small effect of localized heater size on the melting time with the same rate of heat generation density from the porous structure. However, for an identical volumetric heat source power of the localised heater, the rate of heat generation per volume is more effective compared with the heating element size due to the presence of the porous medium.

Research paper thumbnail of Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification

Molecules, 2020

Applying a well-performing heat exchanger is an efficient way to fortify the relatively low therm... more Applying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melting and solidification modes. It is found that the melting rate is about 8% faster, and the average temperature is 4 K higher in the corrugated region compared with the smooth region because of the large heat-exchange surface area, which facilitates higher...

Research paper thumbnail of Localized heating element distribution in composite metal foam‐phase change material: Fourier's law and creeping flow effects

International Journal of Energy Research, 2021

Research paper thumbnail of Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System

Energies, 2021

A twisted-fin array as an innovative structure for intensifying the charging response of a phase-... more A twisted-fin array as an innovative structure for intensifying the charging response of a phase-change material (PCM) within a shell-and-tube storage system is introduced in this work. A three-dimensional model describing the thermal management with charging phase change process in PCM was developed and numerically analyzed by the enthalpy-porosity method using commercial CFD software. Efficacy of the proposed structure of fins for performing better heat communication between the active heating surface and the adjacent layers of PCM was verified via comparing with conventional longitudinal fins within the same design limitations of fin material and volume usage. Optimization of the fin geometric parameters including the pitch, number, thickness, and the height of the twisted fins for superior performance of the proposed fin structure, was also introduced via the Taguchi method. The results show that a faster charging rate, higher storage rate, and better uniformity in temperature d...

Research paper thumbnail of Solidification Enhancement in a Multi-Tube Latent Heat Storage System for Efficient and Economical Production: Effect of Number, Position and Temperature of the Tubes

Nanomaterials, 2021

Thermal energy storage is an important component in energy units to decrease the gap between ener... more Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that moving the HTF tubes to medium positions along the vertical direction is relatively better for enhancing the solidification of PCM with multiple HTF tubes. Repositioning of the HTF tubes on the left side of the unit can slightly improve the heat removal r...

Research paper thumbnail of Desalination of Agricultural Wastewater by Solar Adsorption System: A Numerical Study

There are still areas around the world suffer from severe shortage of freshwater supplies. Desali... more There are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to solve the mass and heat balance equations for the adsorbent bed, condenser, and evaporator components. At a typical temperature of 89 °C and flow rate of 30 m3/sec for the hot water entering the bed, the following results are reported: (a) the specific dail...

Research paper thumbnail of Natural Convection Heat Transfer in an Inclined Open-Ended Square Cavity with Partially Active Side Wall

This paper reports a numerical study of flow behaviors and natural convection heat transfer chara... more This paper reports a numerical study of flow behaviors and natural convection heat transfer characteristics in an inclined open-ended square cavity filled with air. The cavity is formed by adiabatic top and bottom walls and partially heated vertical wall facing the opening. Governing equations in vorticity-stream function form are discretized via finitedifference method and are solved numerically by iterative successive under relaxation (SUR) technique. A computer program to solve mathematical model has been developed and written as a code for MATLAB software. Results in the form of streamlines, isotherms, and average Nusselt number, are obtained for a wide range of Rayleigh numbers 10 3 -10 6 with Prandtl number 0.71 (air) , inclination angles measured from the horizontal direction 0o-60o , dimensionless lengths of the active part 0.4-1 ,and different locations of the thermally active part at the vertical wall. The Results show that heat transfer rate is high when the length of the...

Research paper thumbnail of Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement

Energies

The solidification process in a multi-tube latent heat energy system is affected by the natural c... more The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, including uniform distribution of the tubes as well as non-uniform distribution, i.e., tubes concentrated at the bottom, middle and the top of the PCM shell. The model was first validated compared with previous experimental work from the literature. The re...

Research paper thumbnail of Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins

Energies

This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utili... more This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins. The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy. The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate. This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet temperature of the heat transfer fluid. The outcomes stated the benefits of using twisted fins related to those cases of straight fins and the no-fins. The impact of multi-twisted fins was also considered to detect their influences on the solidification proc...

Research paper thumbnail of Consecutive charging and discharging of a PCM-based plate heat exchanger with zigzag configuration

Applied Thermal Engineering

Research paper thumbnail of Simultaneous and consecutive charging and discharging of a PCM-based domestic air heater with metal foam

Applied Thermal Engineering

Research paper thumbnail of Efficient thermal management of the photovoltaic/phase change material system with innovative exterior metal-foam layer

Research paper thumbnail of Localized heating element distribution in composite metal foam-phase change material: Fourier's law and creeping flow effects

Research paper thumbnail of Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System

This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

Research paper thumbnail of Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification

Applying a well-performing heat exchanger is an efficient way to fortify the relatively low therm... more Applying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melting and solidification modes. It is found that the melting rate is about 8% faster, and the average temperature is 4 K higher in the corrugated region compared with the smooth region because of the large heat-exchange surface area, which facilitates higher rates of heat transfer into the PCM channel. In addition to the higher performance, a more compact unit can be achieved using the corrugated system. Moreover, applying the half-width PCM channel accelerates the melting rate by eight times compared to the double-width channel. Meanwhile, applying thicker channels provides faster solidification rates. The melting rate is proportional to the airflow temperature. The PCM melts within 274 s when the airflow temperature is 328 K. However, the melting time increases to 460 s for the airflow temperature of 308 K. Moreover, the PCM solidifies in 250 s and 405 s in the cases of 318 K and 328 K airflow temperatures, respectively.

Research paper thumbnail of Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage

Materials

Utilizing phase change materials in thermal energy storage systems is commonly considered as an a... more Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes revealed that based on the Taguchi method, the first row of the heat transfer fluid tubes should be located at the lowest possible area while the other tubes should be spread consistently in the enclosure. The charging rate changed by 76% when varying the l...

Research paper thumbnail of Effect of airflow channel arrangement on the discharge of a composite metal foam‐phase change material heat exchanger

International Journal of Energy Research

Research paper thumbnail of Improved melting of latent heat storage via porous medium and uniform Joule heat generation

energy storage, 2020

To enhance the rate of heat transfer in phase change materials (PCM), high conductivity porous ma... more To enhance the rate of heat transfer in phase change materials (PCM), high conductivity porous materials have been widely used recently as a promising method. This study introduces a novel approach for improving melting of PCM by incorporating uniform Joule heat generation with the porous structure compared to central heat generation. Different cases based on the heater-in foam configuration under the same heat generation rate are numerically verified and compared with the case of using the central heating element, which the heat transfer in the domain enhances by the porous medium. The effects of pore density and rate of heat generation are explored using the thermal non-equilibrium model to better deal with the interstitial heat transfer between the internal heat-generated-in-foam and the PCM. For the case with the central heating element, the effects of heater dimensions as well as the rate of heat generation are also investigated. The results show that the uniform heat generatio...

Research paper thumbnail of Natural Convection Heat Transfer in an Inclined Open-Ended Square Cavity with Partially Active Side Wall

This paper reports a numerical study of flow behaviors and natural convection heat transfer chara... more This paper reports a numerical study of flow behaviors and natural convection heat transfer characteristics in an inclined open-ended square cavity filled with air. The cavity is formed by adiabatic top and bottom walls and partially heated vertical wall facing the opening. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. A computer program to solve mathematical model has been developed and written as a code for MATLAB software. Results in the form of streamlines, isotherms, and average Nusselt number, are obtained for a wide range of Rayleigh numbers 10 3-10 6 with Prandtl number 0.71 (air) , inclination angles measured from the horizontal direction 0º-60º , dimensionless lengths of the active part 0.4-1 ,and different locations of the thermally active part at the vertical wall. The Results show that heat transfer rate is high when the length of the...

Research paper thumbnail of Numerical Analysis of Double Diffusive Laminar Natural Convection in a Right Angle Triangular Solar Collector

A numerical study of the double-diffusive laminar natural convection in a right triangular solar ... more A numerical study of the double-diffusive laminar natural convection in a right triangular solar collector has been investigated in present work. The base (absorber) and glass cover of the collector are isothermal and isoconcentration surfaces, while the vertical wall is considered adiabatic and impermeable. Both aiding and opposing buoyancy forces have been studied. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. Computer code for MATLAB software has been developed and written to solve mathematical model. Results in the form of streamlines, isotherms, isoconcentration, average Nusselt, and average Sherwood number, are presented for wide range of the buoyancy ratio , angle of inclined glass cover with horizontal coordinate , Lewis number , thermal Rayleigh number , and Prandtl number. The results show that above parameters have strong influences on ...

Research paper thumbnail of Improved melting of latent heat storage via porous medium and uniform Joule heat generation

Journal of Energy Storage, 2020

Abstract To enhance the rate of heat transfer in phase change materials (PCM), high conductivity ... more Abstract To enhance the rate of heat transfer in phase change materials (PCM), high conductivity porous materials have been widely used recently as a promising method. This study introduces a novel approach for improving melting of PCM by incorporating uniform Joule heat generation with the porous structure compared to central heat generation. Different cases based on the heater-in foam configuration under the same heat generation rate are numerically verified and compared with the case of using the central heating element, which the heat transfer in the domain enhances by the porous medium. The effects of pore density and rate of heat generation are explored using the thermal non-equilibrium model to better deal with the interstitial heat transfer between the internal heat-generated-in-foam and the PCM. For the case with the central heating element, the effects of heater dimensions as well as the rate of heat generation are also investigated. The results show that the uniform heat generation from the porous structure can substantially reduce the melting time. Applying 100 kW/m3 for the rate of heat generation reduces the melting time by 21% compared with the best case of the localised heater. Meanwhile, applying higher pore-density foam does not bring any significant effect due to the uniform distribution of the heat generation. The results also show a small effect of localized heater size on the melting time with the same rate of heat generation density from the porous structure. However, for an identical volumetric heat source power of the localised heater, the rate of heat generation per volume is more effective compared with the heating element size due to the presence of the porous medium.

Research paper thumbnail of Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification

Molecules, 2020

Applying a well-performing heat exchanger is an efficient way to fortify the relatively low therm... more Applying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melting and solidification modes. It is found that the melting rate is about 8% faster, and the average temperature is 4 K higher in the corrugated region compared with the smooth region because of the large heat-exchange surface area, which facilitates higher...

Research paper thumbnail of Localized heating element distribution in composite metal foam‐phase change material: Fourier's law and creeping flow effects

International Journal of Energy Research, 2021

Research paper thumbnail of Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System

Energies, 2021

A twisted-fin array as an innovative structure for intensifying the charging response of a phase-... more A twisted-fin array as an innovative structure for intensifying the charging response of a phase-change material (PCM) within a shell-and-tube storage system is introduced in this work. A three-dimensional model describing the thermal management with charging phase change process in PCM was developed and numerically analyzed by the enthalpy-porosity method using commercial CFD software. Efficacy of the proposed structure of fins for performing better heat communication between the active heating surface and the adjacent layers of PCM was verified via comparing with conventional longitudinal fins within the same design limitations of fin material and volume usage. Optimization of the fin geometric parameters including the pitch, number, thickness, and the height of the twisted fins for superior performance of the proposed fin structure, was also introduced via the Taguchi method. The results show that a faster charging rate, higher storage rate, and better uniformity in temperature d...

Research paper thumbnail of Solidification Enhancement in a Multi-Tube Latent Heat Storage System for Efficient and Economical Production: Effect of Number, Position and Temperature of the Tubes

Nanomaterials, 2021

Thermal energy storage is an important component in energy units to decrease the gap between ener... more Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that moving the HTF tubes to medium positions along the vertical direction is relatively better for enhancing the solidification of PCM with multiple HTF tubes. Repositioning of the HTF tubes on the left side of the unit can slightly improve the heat removal r...

Research paper thumbnail of Desalination of Agricultural Wastewater by Solar Adsorption System: A Numerical Study

There are still areas around the world suffer from severe shortage of freshwater supplies. Desali... more There are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to solve the mass and heat balance equations for the adsorbent bed, condenser, and evaporator components. At a typical temperature of 89 °C and flow rate of 30 m3/sec for the hot water entering the bed, the following results are reported: (a) the specific dail...

Research paper thumbnail of Natural Convection Heat Transfer in an Inclined Open-Ended Square Cavity with Partially Active Side Wall

This paper reports a numerical study of flow behaviors and natural convection heat transfer chara... more This paper reports a numerical study of flow behaviors and natural convection heat transfer characteristics in an inclined open-ended square cavity filled with air. The cavity is formed by adiabatic top and bottom walls and partially heated vertical wall facing the opening. Governing equations in vorticity-stream function form are discretized via finitedifference method and are solved numerically by iterative successive under relaxation (SUR) technique. A computer program to solve mathematical model has been developed and written as a code for MATLAB software. Results in the form of streamlines, isotherms, and average Nusselt number, are obtained for a wide range of Rayleigh numbers 10 3 -10 6 with Prandtl number 0.71 (air) , inclination angles measured from the horizontal direction 0o-60o , dimensionless lengths of the active part 0.4-1 ,and different locations of the thermally active part at the vertical wall. The Results show that heat transfer rate is high when the length of the...

Research paper thumbnail of Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement

Energies

The solidification process in a multi-tube latent heat energy system is affected by the natural c... more The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, including uniform distribution of the tubes as well as non-uniform distribution, i.e., tubes concentrated at the bottom, middle and the top of the PCM shell. The model was first validated compared with previous experimental work from the literature. The re...

Research paper thumbnail of Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins

Energies

This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utili... more This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins. The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy. The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate. This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet temperature of the heat transfer fluid. The outcomes stated the benefits of using twisted fins related to those cases of straight fins and the no-fins. The impact of multi-twisted fins was also considered to detect their influences on the solidification proc...

Research paper thumbnail of Consecutive charging and discharging of a PCM-based plate heat exchanger with zigzag configuration

Applied Thermal Engineering

Research paper thumbnail of Simultaneous and consecutive charging and discharging of a PCM-based domestic air heater with metal foam

Applied Thermal Engineering

Research paper thumbnail of Efficient thermal management of the photovoltaic/phase change material system with innovative exterior metal-foam layer

Research paper thumbnail of Localized heating element distribution in composite metal foam-phase change material: Fourier's law and creeping flow effects

Research paper thumbnail of Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System

This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

Research paper thumbnail of Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification

Applying a well-performing heat exchanger is an efficient way to fortify the relatively low therm... more Applying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melting and solidification modes. It is found that the melting rate is about 8% faster, and the average temperature is 4 K higher in the corrugated region compared with the smooth region because of the large heat-exchange surface area, which facilitates higher rates of heat transfer into the PCM channel. In addition to the higher performance, a more compact unit can be achieved using the corrugated system. Moreover, applying the half-width PCM channel accelerates the melting rate by eight times compared to the double-width channel. Meanwhile, applying thicker channels provides faster solidification rates. The melting rate is proportional to the airflow temperature. The PCM melts within 274 s when the airflow temperature is 328 K. However, the melting time increases to 460 s for the airflow temperature of 308 K. Moreover, the PCM solidifies in 250 s and 405 s in the cases of 318 K and 328 K airflow temperatures, respectively.

Research paper thumbnail of Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage

Materials

Utilizing phase change materials in thermal energy storage systems is commonly considered as an a... more Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes revealed that based on the Taguchi method, the first row of the heat transfer fluid tubes should be located at the lowest possible area while the other tubes should be spread consistently in the enclosure. The charging rate changed by 76% when varying the l...

Research paper thumbnail of Effect of airflow channel arrangement on the discharge of a composite metal foam‐phase change material heat exchanger

International Journal of Energy Research

Research paper thumbnail of Improved melting of latent heat storage via porous medium and uniform Joule heat generation

energy storage, 2020

To enhance the rate of heat transfer in phase change materials (PCM), high conductivity porous ma... more To enhance the rate of heat transfer in phase change materials (PCM), high conductivity porous materials have been widely used recently as a promising method. This study introduces a novel approach for improving melting of PCM by incorporating uniform Joule heat generation with the porous structure compared to central heat generation. Different cases based on the heater-in foam configuration under the same heat generation rate are numerically verified and compared with the case of using the central heating element, which the heat transfer in the domain enhances by the porous medium. The effects of pore density and rate of heat generation are explored using the thermal non-equilibrium model to better deal with the interstitial heat transfer between the internal heat-generated-in-foam and the PCM. For the case with the central heating element, the effects of heater dimensions as well as the rate of heat generation are also investigated. The results show that the uniform heat generatio...