Javier Menendez - Academia.edu (original) (raw)

Uploads

Papers by Javier Menendez

Research paper thumbnail of Systematic protein-protein interaction mapping for clinically relevant human GPCRs

Molecular systems biology, Mar 15, 2017

G-protein-coupled receptors (GPCRs) are the largest family of integral membrane receptors with ke... more G-protein-coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR-mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two-hybrid (MYTH) approach and identified interacting partners for 48 selected full-length human ligand-unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5-HT4d, and adenosine ADORA2A receptors. Our data represent the first large-scale interactome mapping for human GPCRs and provide a valuable re...

Research paper thumbnail of New Method for the Selection of Multicopy Transformants of Pichia pastoris, Using 3-Amino-1,2,4 Triazol

Research paper thumbnail of 506 POSTER The apogenic anti-CD9 antibody, AR40A746.2.3, inhibits tumor growth in breast and pancreatic cancer and targets cancer stem cells in acute myeloid leukemia

European Journal of Cancer Supplements, 2008

Research paper thumbnail of TheICL1 gene ofPichia pastoris, transcriptional regulation and use of its promoter

Yeast, 2003

We cloned and characterized a gene encoding isocitrate lyase from the methylotrophic yeast Pichia... more We cloned and characterized a gene encoding isocitrate lyase from the methylotrophic yeast Pichia pastoris. This gene was isolated from a P. pastoris genomic library using a homologous PCR hybridization probe, amplified with two sets of degenerate primers designed from conserved regions in yeast isocitrate lyases. The cloned gene was sequenced and consists of an open reading frame of 1563 bp encoding a protein of 551 amino acids. The molecular mass of the protein is calculated to be 60.6 kDa with high sequence similarity to isocitrate lyase from other organisms. There is a 64% identity between amino acid sequences of P. pastoris Icl and Saccharomyces cerevisiae Icl. Northern blot analyses showed that, as in S. cerevisiae, the steady-state ICL1 mRNA levels depend on the carbon source used for cell growth. Expression in P. pastoris of the dextranase gene (dexA) from Penicillium minioluteum under control of the ICL1 promoter proved that P(ICL1) is a good alternative for the expression of heterologous proteins in this methylotrophic yeast. The sequence presented here has been deposited in the EMBL data library under Accession No. AJ272040.

Research paper thumbnail of Isolation and sequence of theMIG1 homologue from the yeastCandida utilis

Yeast, 2001

The Mig1p repressor from the food yeast Candida utilis has been isolated using a homologous PCR h... more The Mig1p repressor from the food yeast Candida utilis has been isolated using a homologous PCR hybridization probe. This probe was amplified with two sets of degenerate primers designed on the basis of highly conserved motifs in the DNA‐binding region (zinc‐finger domain) from yeast Mig1p and fungi CreA repressors. The cloned gene was sequenced and found to encode a polypeptide of 345 amino acids which shows significant identity with other yeast and fungus repressors in the DNA‐binding domain and also with the yeast Mig1 proteins in the C‐terminal region (effector domain). The MIG1 repressor gene from C. utilis was able to complement functionally the mig1 mutation of S. cerevisiae. The sequence presented here has been deposited in the EMBL data library under Accession No. AJ277830. Copyright © 2001 John Wiley & Sons, Ltd.

Research paper thumbnail of Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases

The EMBO Journal, 2004

Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bila... more Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water-requiring hydrolysis reaction. These enzymes include site-2 protease, c-secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of their high hydrophobicity, have been difficult to purify. We have now developed an in vitro assay to monitor rhomboid activity in the detergent solubilised state. This has allowed us to isolate for the first time a highly pure rhomboid with catalytic activity. Our results suggest that detergent-solubilised rhomboid activity mimics its activity in biological membranes in many aspects. Analysis of purified mutant proteins suggests that rhomboids use a serine protease catalytic dyad instead of the previously proposed triad. This analysis also suggests that other conserved residues participate in subsidiary functions like ligand binding and water supply. We identify a motif shared between rhomboids and the recently discovered derlins, which participate in translocation of misfolded membrane proteins.

Research paper thumbnail of A robust purification strategy to accelerate membrane proteomics

Research paper thumbnail of Investigating the in vivo activity of the DeaD protein using protein–protein interactions and the translational activity of structured chloramphenicol acetyltransferase mRNAs

Journal of Cellular Biochemistry, 2007

Here, we report the use of an in vivo protein-protein interaction detection approach together wit... more Here, we report the use of an in vivo protein-protein interaction detection approach together with focused follow-up experiments to study the function of the DeaD protein in Escherichia coli. In this method, functions are assigned to proteins based on the interactions they make with others in the living cell. The assigned functions are further confirmed using follow-up experiments. The DeaD protein has been characterized in vitro as a putative prokaryotic factor required for the formation of translation initiation complexes on structured mRNAs. Although the RNA helicase activity of DeaD has been demonstrated in vitro, its in vivo activity remains controversial. Here, using a method called sequential peptide affinity (SPA) tagging, we show that DeaD interacts with certain ribosomal proteins as well as a series of other nucleic acid binding proteins. Focused follow-up experiments provide evidence for the mRNA helicase activity of the DeaD protein complex during translation initiation. DeaD overexpression compensates for the reduction of the translation activity caused by a structure placed at the initiation region of a chloramphenicol acetyltransferase gene (cat) used as a reporter. Deletion of the deaD gene, encoding DeaD, abolishes the translation activity of the mRNA with an inhibitory structure at its initiation region. Increasing the growth temperature disrupts RNA secondary structures and bypasses the DeaD requirement. These observations suggest that DeaD is involved in destabilizing mRNA structures during translation initiation. This study also provides further confirmation that large-scale protein-protein interaction data can be suitable to study protein functions in E. coli.

Research paper thumbnail of Regulation of pyc1 encoding pyruvate carboxylase isozyme I by nitrogen sources in Saccharomyces cerevisiae

European Journal of Biochemistry, 2000

In Saccharomyces cerevisiae, the existence of PYC1 and PYC2 encoding cytosolic pyruvate carboxyla... more In Saccharomyces cerevisiae, the existence of PYC1 and PYC2 encoding cytosolic pyruvate carboxylase isoform I and II is rather puzzling, owing to the lack of potent differential gene regulation by the carbon sources. We report several findings indicating that these two genes are differentially regulated by the nature of the nitrogen source. In wild-type cells, the activity of pyruvate carboxylase, which is the sum of pyruvate carboxylase isoform I and II, was two-to fivefold lower in carbon medium containing aspartate, asparagine, glutamate or glutamine instead of ammonium as the nitrogen source, whereas it was 1.5-to threefold higher when the ammonium source was substituted by arginine, methionine, threonine or leucine. These enzymatic changes were independent of the nature of the carbon source and closely correlated to the changes in b-galactosidase from PYC1-lacZ gene fusion and in PYC1 transcripts. Transfer of exponentially growing cells of the pyc2 mutant from an aspartate or a glutamate medium to an ammonium medium caused a fivefold increase in PYC1 mRNA in less than 30 min, whereas in the inverse experiment, PYC1 transcripts returned within 30 min to the low levels found in aspartate/ glutamate medium. By contrast, these conditions affected neither the pyruvate carboxylase activity encoded by PYC2 nor PYC2 mRNA. Considering that changes in PYC1 expression inversely correlated with changes in a-ketoglutarate concentration or in a-ketoglutarate/glutamate ratio following the nitrogen shift experiments, and taking into account the pivotal role of this metabolite in ammonium assimilation, it is suggested that changes in a-ketoglutarate or in the a-ketoglutarate/glutamate ratio might be implicated in triggering the nitrogen effects on PYC1 expression. The physiological significance of the differential sensitivity of PYC1 and PYC2 genes with respect to the nitrogen source in the growth medium is also discussed.

Research paper thumbnail of Systematic protein-protein interaction mapping for clinically relevant human GPCRs

Molecular systems biology, Mar 15, 2017

G-protein-coupled receptors (GPCRs) are the largest family of integral membrane receptors with ke... more G-protein-coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR-mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two-hybrid (MYTH) approach and identified interacting partners for 48 selected full-length human ligand-unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5-HT4d, and adenosine ADORA2A receptors. Our data represent the first large-scale interactome mapping for human GPCRs and provide a valuable re...

Research paper thumbnail of New Method for the Selection of Multicopy Transformants of Pichia pastoris, Using 3-Amino-1,2,4 Triazol

Research paper thumbnail of 506 POSTER The apogenic anti-CD9 antibody, AR40A746.2.3, inhibits tumor growth in breast and pancreatic cancer and targets cancer stem cells in acute myeloid leukemia

European Journal of Cancer Supplements, 2008

Research paper thumbnail of TheICL1 gene ofPichia pastoris, transcriptional regulation and use of its promoter

Yeast, 2003

We cloned and characterized a gene encoding isocitrate lyase from the methylotrophic yeast Pichia... more We cloned and characterized a gene encoding isocitrate lyase from the methylotrophic yeast Pichia pastoris. This gene was isolated from a P. pastoris genomic library using a homologous PCR hybridization probe, amplified with two sets of degenerate primers designed from conserved regions in yeast isocitrate lyases. The cloned gene was sequenced and consists of an open reading frame of 1563 bp encoding a protein of 551 amino acids. The molecular mass of the protein is calculated to be 60.6 kDa with high sequence similarity to isocitrate lyase from other organisms. There is a 64% identity between amino acid sequences of P. pastoris Icl and Saccharomyces cerevisiae Icl. Northern blot analyses showed that, as in S. cerevisiae, the steady-state ICL1 mRNA levels depend on the carbon source used for cell growth. Expression in P. pastoris of the dextranase gene (dexA) from Penicillium minioluteum under control of the ICL1 promoter proved that P(ICL1) is a good alternative for the expression of heterologous proteins in this methylotrophic yeast. The sequence presented here has been deposited in the EMBL data library under Accession No. AJ272040.

Research paper thumbnail of Isolation and sequence of theMIG1 homologue from the yeastCandida utilis

Yeast, 2001

The Mig1p repressor from the food yeast Candida utilis has been isolated using a homologous PCR h... more The Mig1p repressor from the food yeast Candida utilis has been isolated using a homologous PCR hybridization probe. This probe was amplified with two sets of degenerate primers designed on the basis of highly conserved motifs in the DNA‐binding region (zinc‐finger domain) from yeast Mig1p and fungi CreA repressors. The cloned gene was sequenced and found to encode a polypeptide of 345 amino acids which shows significant identity with other yeast and fungus repressors in the DNA‐binding domain and also with the yeast Mig1 proteins in the C‐terminal region (effector domain). The MIG1 repressor gene from C. utilis was able to complement functionally the mig1 mutation of S. cerevisiae. The sequence presented here has been deposited in the EMBL data library under Accession No. AJ277830. Copyright © 2001 John Wiley & Sons, Ltd.

Research paper thumbnail of Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases

The EMBO Journal, 2004

Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bila... more Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water-requiring hydrolysis reaction. These enzymes include site-2 protease, c-secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of their high hydrophobicity, have been difficult to purify. We have now developed an in vitro assay to monitor rhomboid activity in the detergent solubilised state. This has allowed us to isolate for the first time a highly pure rhomboid with catalytic activity. Our results suggest that detergent-solubilised rhomboid activity mimics its activity in biological membranes in many aspects. Analysis of purified mutant proteins suggests that rhomboids use a serine protease catalytic dyad instead of the previously proposed triad. This analysis also suggests that other conserved residues participate in subsidiary functions like ligand binding and water supply. We identify a motif shared between rhomboids and the recently discovered derlins, which participate in translocation of misfolded membrane proteins.

Research paper thumbnail of A robust purification strategy to accelerate membrane proteomics

Research paper thumbnail of Investigating the in vivo activity of the DeaD protein using protein–protein interactions and the translational activity of structured chloramphenicol acetyltransferase mRNAs

Journal of Cellular Biochemistry, 2007

Here, we report the use of an in vivo protein-protein interaction detection approach together wit... more Here, we report the use of an in vivo protein-protein interaction detection approach together with focused follow-up experiments to study the function of the DeaD protein in Escherichia coli. In this method, functions are assigned to proteins based on the interactions they make with others in the living cell. The assigned functions are further confirmed using follow-up experiments. The DeaD protein has been characterized in vitro as a putative prokaryotic factor required for the formation of translation initiation complexes on structured mRNAs. Although the RNA helicase activity of DeaD has been demonstrated in vitro, its in vivo activity remains controversial. Here, using a method called sequential peptide affinity (SPA) tagging, we show that DeaD interacts with certain ribosomal proteins as well as a series of other nucleic acid binding proteins. Focused follow-up experiments provide evidence for the mRNA helicase activity of the DeaD protein complex during translation initiation. DeaD overexpression compensates for the reduction of the translation activity caused by a structure placed at the initiation region of a chloramphenicol acetyltransferase gene (cat) used as a reporter. Deletion of the deaD gene, encoding DeaD, abolishes the translation activity of the mRNA with an inhibitory structure at its initiation region. Increasing the growth temperature disrupts RNA secondary structures and bypasses the DeaD requirement. These observations suggest that DeaD is involved in destabilizing mRNA structures during translation initiation. This study also provides further confirmation that large-scale protein-protein interaction data can be suitable to study protein functions in E. coli.

Research paper thumbnail of Regulation of pyc1 encoding pyruvate carboxylase isozyme I by nitrogen sources in Saccharomyces cerevisiae

European Journal of Biochemistry, 2000

In Saccharomyces cerevisiae, the existence of PYC1 and PYC2 encoding cytosolic pyruvate carboxyla... more In Saccharomyces cerevisiae, the existence of PYC1 and PYC2 encoding cytosolic pyruvate carboxylase isoform I and II is rather puzzling, owing to the lack of potent differential gene regulation by the carbon sources. We report several findings indicating that these two genes are differentially regulated by the nature of the nitrogen source. In wild-type cells, the activity of pyruvate carboxylase, which is the sum of pyruvate carboxylase isoform I and II, was two-to fivefold lower in carbon medium containing aspartate, asparagine, glutamate or glutamine instead of ammonium as the nitrogen source, whereas it was 1.5-to threefold higher when the ammonium source was substituted by arginine, methionine, threonine or leucine. These enzymatic changes were independent of the nature of the carbon source and closely correlated to the changes in b-galactosidase from PYC1-lacZ gene fusion and in PYC1 transcripts. Transfer of exponentially growing cells of the pyc2 mutant from an aspartate or a glutamate medium to an ammonium medium caused a fivefold increase in PYC1 mRNA in less than 30 min, whereas in the inverse experiment, PYC1 transcripts returned within 30 min to the low levels found in aspartate/ glutamate medium. By contrast, these conditions affected neither the pyruvate carboxylase activity encoded by PYC2 nor PYC2 mRNA. Considering that changes in PYC1 expression inversely correlated with changes in a-ketoglutarate concentration or in a-ketoglutarate/glutamate ratio following the nitrogen shift experiments, and taking into account the pivotal role of this metabolite in ammonium assimilation, it is suggested that changes in a-ketoglutarate or in the a-ketoglutarate/glutamate ratio might be implicated in triggering the nitrogen effects on PYC1 expression. The physiological significance of the differential sensitivity of PYC1 and PYC2 genes with respect to the nitrogen source in the growth medium is also discussed.