Jennifer Wu - Academia.edu (original) (raw)

Papers by Jennifer Wu

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of RELC Journal-2011-Zareva-5-15

Linking adverbials not only perform connecting functions between units of discourse but also faci... more Linking adverbials not only perform connecting functions between units of discourse but also facilitate the logical flow of a presentation and significantly affect the ways meaning is organized and conveyed by speakers and interpreted by listeners. The study examined comparatively L1 (n = 16) and L2 (n = 16) student presenters' uses of linking adverbials in an attempt to uncover their range of forms, semantic types, frequency, and positions in L1 and L2 presentations. The analysis revealed that the two groups shared a great deal of commonalities in their choices of linking adverbials in terms of semantic types, forms, frequency, and position of these linking devices. It also identified a few specific cases of over-uses of certain types and forms in the L2 data that ESL presenters should be explicitly made aware of in their English language instruction.

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation

Nature, 2002

Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by sti... more Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

Research paper thumbnail of Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein1

Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and ... more Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 ␣␤ T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.

Research paper thumbnail of T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial T Cells1

Research paper thumbnail of RELC Journal-2011-Zareva-5-15

Linking adverbials not only perform connecting functions between units of discourse but also faci... more Linking adverbials not only perform connecting functions between units of discourse but also facilitate the logical flow of a presentation and significantly affect the ways meaning is organized and conveyed by speakers and interpreted by listeners. The study examined comparatively L1 (n = 16) and L2 (n = 16) student presenters' uses of linking adverbials in an attempt to uncover their range of forms, semantic types, frequency, and positions in L1 and L2 presentations. The analysis revealed that the two groups shared a great deal of commonalities in their choices of linking adverbials in terms of semantic types, forms, frequency, and position of these linking devices. It also identified a few specific cases of over-uses of certain types and forms in the L2 data that ESL presenters should be explicitly made aware of in their English language instruction.