Jeremy Peppers - Academia.edu (original) (raw)

Related Authors

Adnan Kurt

Adnan Kurt

University of Istanbul Faculty of Medicine of Istanbul

Umit Demirbas

Kenneth L Schepler

Antoine Godard

Uploads

Papers by Jeremy Peppers

Research paper thumbnail of Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers

Proceedings of SPIE - The International Society for Optical Engineering

We report methods of fabrication and laser-spectroscopic characterization of mid-IR gain media ba... more We report methods of fabrication and laser-spectroscopic characterization of mid-IR gain media based on micron size Cr2+:ZnSe/ZnS powders, as well as Cr2+:ZnSe/ZnS doped fluorocarbon polymer films, and perfluorocarbon liquids. All samples demonstrated strong mid-IR luminescence over 2000-3000nm spectral range under optical 1700nm excitation. The random lasing of the doped liquids and polymer films was realized with pump energy density of 100 and 15mJ/cm2, respectively. Previously we have demonstrated mid-IR electroluminescence of Cr:ZnSe with n-conductivity provided by thermal diffusion of Al and Zn. However, the formation of conductivity was accompanied by compensation of the Cr2+ optical centers and relatively weak chromium electroluminescence. In this paper we report study of the Cr2+ compensation in the crystals co-doped with donor and acceptor impurities. Optical and electrical characterization of Cr:ZnSe crystals with Ag, Cu, Al, In, and Zn co-dopants were studied to optimize ...

Research paper thumbnail of Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers

Proceedings of SPIE - The International Society for Optical Engineering

We report methods of fabrication and laser-spectroscopic characterization of mid-IR gain media ba... more We report methods of fabrication and laser-spectroscopic characterization of mid-IR gain media based on micron size Cr2+:ZnSe/ZnS powders, as well as Cr2+:ZnSe/ZnS doped fluorocarbon polymer films, and perfluorocarbon liquids. All samples demonstrated strong mid-IR luminescence over 2000-3000nm spectral range under optical 1700nm excitation. The random lasing of the doped liquids and polymer films was realized with pump energy density of 100 and 15mJ/cm2, respectively. Previously we have demonstrated mid-IR electroluminescence of Cr:ZnSe with n-conductivity provided by thermal diffusion of Al and Zn. However, the formation of conductivity was accompanied by compensation of the Cr2+ optical centers and relatively weak chromium electroluminescence. In this paper we report study of the Cr2+ compensation in the crystals co-doped with donor and acceptor impurities. Optical and electrical characterization of Cr:ZnSe crystals with Ag, Cu, Al, In, and Zn co-dopants were studied to optimize ...

Log In