Jessica Carmen - Academia.edu (original) (raw)
Papers by Jessica Carmen
Journal of Applied Phycology, 2001
This study integrates landings statistics and biological studies of the red algaGigartina skottsb... more This study integrates landings statistics and biological studies of the red algaGigartina skottsbergii Setchell & Gardner. The analysis of the landings and carrageenan production in Chile suggeststhat this resource will suffer a strong harvesting pressure during the nextyears. Biological results on sporulation, germination, sporeling growth and survivorship in laboratory,indoor tanks and field conditions, indicated that cultivation of this species istechnically feasible, as spores can be seeded on ropes and other substrata. Vegetative propagation of this species through tissue fragmentationis also possible. Vegetative fragments of this carrageenophyte have 20 to30% higher growth rates than whole fronds in suspended culture systems. Protoplast production can be also explored for bypassing restrictions inspore availability. Major advantages that encourage the cultivation of G. skottsbergii include its gel quantity and quality, its pathogen-freecondition, a high reproduction potential and its regeneration capacity. Onthe other hand, the major constraints are related to its relatively slowgrowth as compared to other carrageenophytes, limited availability ofspores and high mortality during juvenile stages.
International Review of Psychiatry, 2005
The immune system has a complex and dynamic relationship with the nervous system, both in health ... more The immune system has a complex and dynamic relationship with the nervous system, both in health and disease. The immune system surveys the central and peripheral nervous systems, becoming activated in response to foreign substances, infectious particles or neoplasms. Conversely, the nervous system modulates immune system function both through the neuroendocrine axis and through vagus nerve efferents. In disease states, this dynamic relationship is perturbed, resulting in neuropsychiatric diseases. In this manuscript, we will summarize fundamental principles of the immune system and its interaction with the nervous system. We will describe the critical components of the adaptive and innate branches of the immune system and will describe important effectors and signalling pathways in each. By understanding the principles of the immune system and how these principles relate to nervous system function, the reader will be prepared to interpret subsequent manuscripts in this issue.
Glia, 2006
Neuroadapted Sindbis Virus (NSV) is a neuronotropic virus that causes hindlimb paralysis in susce... more Neuroadapted Sindbis Virus (NSV) is a neuronotropic virus that causes hindlimb paralysis in susceptible mice and rats. The authors and others have demonstrated that though death of infected motor neurons occurs, bystander death of uninfected neurons also occurs and both contribute to the paralysis that ensues following infection. The authors have previously shown that the treatment of NSV-infected mice with minocycline, an inhibitor that has many functions within the central nervous system (CNS), including inhibiting microglial activation, protects mice from paralysis and death. The authors, therefore, proposed that microglial activation may contribute to bystander death of motor neurons following NSV infection. Here, the authors tested the hypothesis using a conditional knock-out of activated macrophage-lineage cells, including endogenous CNS macrophage cells. Surprisingly, ablation of these cells resulted in more rapid death and similar weakness in the hind limbs of NSV-infected animals compared with that of control animals. Several key chemokines including IL-12 and monocyte chemoattractant protein-1 (MCP-1) did not become elevated in these animals, resulting in decreased infiltration of T lymphocytes into the CNS of the knock-down animals. Either because of the decreased macrophage activation directly or because of the reduced immune cell influx, viral replication persisted longer within the nervous system in knock-down mice than in wild type mice. The authors, therefore, conclude that although macrophage-lineage cells in the CNS may contribute to neurodegeneration in certain situations, they also serve a protective role, such as control of viral replication. © 2006 Wiley-Liss, Inc.
Annals of Neurology, 2006
We explored the potential of embryonic stem cell-derived motor neurons to functionally replace th... more We explored the potential of embryonic stem cell-derived motor neurons to functionally replace those cells destroyed in paralyzed adult rats. Methods: We administered a phosphodiesterase type 4 inhibitor and dibutyryl cyclic adenosine monophosphate to overcome myelin-mediated repulsion and provided glial cell-derived neurotrophic factor within the sciatic nerve to attract transplanted embryonic stem cell-derived axons toward skeletal muscle targets. Results: We found that these strategies significantly increased the success of transplanted axons extending out of the spinal cord into ventral roots. Furthermore, transplant-derived axons reached muscle, formed neuromuscular junctions, were physiologically active, and mediated partial recovery from paralysis. Interpretation: We conclude that restoration of functional motor units by embryonic stem cells is possible and represents a potential therapeutic strategy for patients with paralysis. To our knowledge, this is the first report of the anatomical and functional replacement of a motor neuron circuit within the adult mammalian host.
Brain Research, 2009
Neuroadapted Sindbis virus (NSV) is a neuronotropic virus that causes a fulminant encephalomyelit... more Neuroadapted Sindbis virus (NSV) is a neuronotropic virus that causes a fulminant encephalomyelitis in susceptible mice due to death of motor neurons in the brain and spinal cord. We and others have found that uninfected motor neurons die in response to NSV infection, at least in part due to disrupted astrocytic glutamate transport, resulting in excitotoxic motor neuron death. Here, we examined the mechanisms of astrocyte dysregulation associated with NSV infection. Treatment of organotypic slice cultures with NSV results in viral replication, cell death, altered astrocyte morphology, and the downregulation of the astrocytic glutamate transporter, GLT-1. We have found that TNF-α can mediate GLT-1 downregulation. Furthermore, TNF-α deficient mice infected with NSV exhibit neither GLT-1 downregulation nor neuronal death of brainstem and cervical spinal cord motor neurons and have markedly reduced mortality. These findings have implications for disease intervention and therapeutic development for the prevention of CNS damage associated with inflammatory responses.
Experimental Neurology, 2008
Astrocytes play important roles in normal CNS function; however, following traumatic injury or du... more Astrocytes play important roles in normal CNS function; however, following traumatic injury or during neurodegeneration, astrocytes undergo changes in morphology, gene expression and cellular function known as reactive astrogliosis, a process that may also include cell proliferation. At present, the role of astrocyte proliferation is not understood in disease etiology of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder that is characterized by a relatively rapid degeneration of upper and lower motor neurons. Therefore, the role of astrocyte proliferation was assessed in both acute and chronic mouse models of motor neuron degeneration, neuroadapted sindbis virus (NSV)-infected mice and SOD1 G93A mice, respectively. While astrocytes proliferated in the lumbar spinal cord ventral horn of both disease models, they represented only a small percentage of the dividing population in the SOD1 G93A spinal cord. Furthermore, selective ablation of proliferating GFAP + astrocytes in 1) NSV-infected transgenic mice in which herpes simplex virus-thymidine kinase is expressed in GFAP + cells (GFAP-TK) and in 2) SOD1 G93A ×GFAP-TK mice did not affect any measures of disease outcome such as animal survival, disease onset, disease duration, hindlimb motor function or motor neuron loss. Ablation of dividing astrocytes also did not alter overall astrogliosis in either model. This was likely due to the finding that proliferation of NG2 + glial progenitors were unaffected. These findings demonstrate that while normal astrocyte function is an important factor in the etiology of motor neuron diseases such as ALS, astrocyte proliferation itself does not play a significant role.
Glia, 2008
The focus of most neurodegenerative disease studies has been on neuronal death in particular subp... more The focus of most neurodegenerative disease studies has been on neuronal death in particular subpopulations of the central nervous system. The associated response of glial populations has been ascribed the term “reactive astrocytosis.” This has been defined as the proliferation of astrocytes accompanied by cellular hypertrophy and changes in gene expression following injury to the central nervous system. Yet the significance of that response to disease course is debated. In both human ALS and in the SOD1G93A mouse model of ALS, reactive astrocytosis is a hallmark of the disease—particularly at endstage. The brain also harbors immature progenitors which have the capacity for differentiation into both glial and neuronal lineages. We examined whether glial progenitors in the adult spinal cord of SOD1G93A mice become activated and contribute the astroglial response observed in this model. We found that the glial progenitor proteoglycan NG2 is increased in parallel with GFAP during the symptomatic phase of the disease and that there is a differential in vitro response of SOD1G93A glial progenitors to inflammatory cytokines when compared to wildtype mouse glial progenitors. This response was accompanied by the proliferation of glial progenitors but not mature GFAP+ astrocytes, through the translocation of the transcription factor Olig2 from the nucleus to the cytoplasm—resulting in astrocyte differentiation. These data suggest that adult glial progenitors from SOD1G93A mice differentially respond to inflammatory cytokines and contribute to the observed reactive astrocytosis observed in SOD1G93A mouse lumbar spinal cord. © 2007 Wiley-Liss, Inc.
Progress in Neurobiology, 2007
The lineages of both astrocytes and oligodendrocytes have been popular areas of research in the l... more The lineages of both astrocytes and oligodendrocytes have been popular areas of research in the last decade. The source of these cells in the mature CNS is relevant to the study of the cellular response to CNS injury. A significant amount of evidence exists to suggest that resident precursor cells proliferate and differentiate into mature glial cells that facilitate tissue repair and recovery. Additionally, the re-entry of mature astrocytes into the cell cycle can also contribute to the pool of new astrocytes that are observed following CNS injury. In order to better understand the glial response to injury in the adult CNS we must revisit the astrocyte-oligodendrocyte relationship. Specifically, we argue that there is a common glial precursor cell from which astrocytes and oligodendrocytes differentiate and that the microenvironment surrounding the injury determines the fate of the stimulated precursor cell. Ideally, better understanding the origin of new glial cells in the injured CNS will facilitate the development of therapeutics targeted to alter the glial response in a beneficial way. #
Journal of Applied Phycology, 2001
This study integrates landings statistics and biological studies of the red algaGigartina skottsb... more This study integrates landings statistics and biological studies of the red algaGigartina skottsbergii Setchell & Gardner. The analysis of the landings and carrageenan production in Chile suggeststhat this resource will suffer a strong harvesting pressure during the nextyears. Biological results on sporulation, germination, sporeling growth and survivorship in laboratory,indoor tanks and field conditions, indicated that cultivation of this species istechnically feasible, as spores can be seeded on ropes and other substrata. Vegetative propagation of this species through tissue fragmentationis also possible. Vegetative fragments of this carrageenophyte have 20 to30% higher growth rates than whole fronds in suspended culture systems. Protoplast production can be also explored for bypassing restrictions inspore availability. Major advantages that encourage the cultivation of G. skottsbergii include its gel quantity and quality, its pathogen-freecondition, a high reproduction potential and its regeneration capacity. Onthe other hand, the major constraints are related to its relatively slowgrowth as compared to other carrageenophytes, limited availability ofspores and high mortality during juvenile stages.
International Review of Psychiatry, 2005
The immune system has a complex and dynamic relationship with the nervous system, both in health ... more The immune system has a complex and dynamic relationship with the nervous system, both in health and disease. The immune system surveys the central and peripheral nervous systems, becoming activated in response to foreign substances, infectious particles or neoplasms. Conversely, the nervous system modulates immune system function both through the neuroendocrine axis and through vagus nerve efferents. In disease states, this dynamic relationship is perturbed, resulting in neuropsychiatric diseases. In this manuscript, we will summarize fundamental principles of the immune system and its interaction with the nervous system. We will describe the critical components of the adaptive and innate branches of the immune system and will describe important effectors and signalling pathways in each. By understanding the principles of the immune system and how these principles relate to nervous system function, the reader will be prepared to interpret subsequent manuscripts in this issue.
Glia, 2006
Neuroadapted Sindbis Virus (NSV) is a neuronotropic virus that causes hindlimb paralysis in susce... more Neuroadapted Sindbis Virus (NSV) is a neuronotropic virus that causes hindlimb paralysis in susceptible mice and rats. The authors and others have demonstrated that though death of infected motor neurons occurs, bystander death of uninfected neurons also occurs and both contribute to the paralysis that ensues following infection. The authors have previously shown that the treatment of NSV-infected mice with minocycline, an inhibitor that has many functions within the central nervous system (CNS), including inhibiting microglial activation, protects mice from paralysis and death. The authors, therefore, proposed that microglial activation may contribute to bystander death of motor neurons following NSV infection. Here, the authors tested the hypothesis using a conditional knock-out of activated macrophage-lineage cells, including endogenous CNS macrophage cells. Surprisingly, ablation of these cells resulted in more rapid death and similar weakness in the hind limbs of NSV-infected animals compared with that of control animals. Several key chemokines including IL-12 and monocyte chemoattractant protein-1 (MCP-1) did not become elevated in these animals, resulting in decreased infiltration of T lymphocytes into the CNS of the knock-down animals. Either because of the decreased macrophage activation directly or because of the reduced immune cell influx, viral replication persisted longer within the nervous system in knock-down mice than in wild type mice. The authors, therefore, conclude that although macrophage-lineage cells in the CNS may contribute to neurodegeneration in certain situations, they also serve a protective role, such as control of viral replication. © 2006 Wiley-Liss, Inc.
Annals of Neurology, 2006
We explored the potential of embryonic stem cell-derived motor neurons to functionally replace th... more We explored the potential of embryonic stem cell-derived motor neurons to functionally replace those cells destroyed in paralyzed adult rats. Methods: We administered a phosphodiesterase type 4 inhibitor and dibutyryl cyclic adenosine monophosphate to overcome myelin-mediated repulsion and provided glial cell-derived neurotrophic factor within the sciatic nerve to attract transplanted embryonic stem cell-derived axons toward skeletal muscle targets. Results: We found that these strategies significantly increased the success of transplanted axons extending out of the spinal cord into ventral roots. Furthermore, transplant-derived axons reached muscle, formed neuromuscular junctions, were physiologically active, and mediated partial recovery from paralysis. Interpretation: We conclude that restoration of functional motor units by embryonic stem cells is possible and represents a potential therapeutic strategy for patients with paralysis. To our knowledge, this is the first report of the anatomical and functional replacement of a motor neuron circuit within the adult mammalian host.
Brain Research, 2009
Neuroadapted Sindbis virus (NSV) is a neuronotropic virus that causes a fulminant encephalomyelit... more Neuroadapted Sindbis virus (NSV) is a neuronotropic virus that causes a fulminant encephalomyelitis in susceptible mice due to death of motor neurons in the brain and spinal cord. We and others have found that uninfected motor neurons die in response to NSV infection, at least in part due to disrupted astrocytic glutamate transport, resulting in excitotoxic motor neuron death. Here, we examined the mechanisms of astrocyte dysregulation associated with NSV infection. Treatment of organotypic slice cultures with NSV results in viral replication, cell death, altered astrocyte morphology, and the downregulation of the astrocytic glutamate transporter, GLT-1. We have found that TNF-α can mediate GLT-1 downregulation. Furthermore, TNF-α deficient mice infected with NSV exhibit neither GLT-1 downregulation nor neuronal death of brainstem and cervical spinal cord motor neurons and have markedly reduced mortality. These findings have implications for disease intervention and therapeutic development for the prevention of CNS damage associated with inflammatory responses.
Experimental Neurology, 2008
Astrocytes play important roles in normal CNS function; however, following traumatic injury or du... more Astrocytes play important roles in normal CNS function; however, following traumatic injury or during neurodegeneration, astrocytes undergo changes in morphology, gene expression and cellular function known as reactive astrogliosis, a process that may also include cell proliferation. At present, the role of astrocyte proliferation is not understood in disease etiology of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder that is characterized by a relatively rapid degeneration of upper and lower motor neurons. Therefore, the role of astrocyte proliferation was assessed in both acute and chronic mouse models of motor neuron degeneration, neuroadapted sindbis virus (NSV)-infected mice and SOD1 G93A mice, respectively. While astrocytes proliferated in the lumbar spinal cord ventral horn of both disease models, they represented only a small percentage of the dividing population in the SOD1 G93A spinal cord. Furthermore, selective ablation of proliferating GFAP + astrocytes in 1) NSV-infected transgenic mice in which herpes simplex virus-thymidine kinase is expressed in GFAP + cells (GFAP-TK) and in 2) SOD1 G93A ×GFAP-TK mice did not affect any measures of disease outcome such as animal survival, disease onset, disease duration, hindlimb motor function or motor neuron loss. Ablation of dividing astrocytes also did not alter overall astrogliosis in either model. This was likely due to the finding that proliferation of NG2 + glial progenitors were unaffected. These findings demonstrate that while normal astrocyte function is an important factor in the etiology of motor neuron diseases such as ALS, astrocyte proliferation itself does not play a significant role.
Glia, 2008
The focus of most neurodegenerative disease studies has been on neuronal death in particular subp... more The focus of most neurodegenerative disease studies has been on neuronal death in particular subpopulations of the central nervous system. The associated response of glial populations has been ascribed the term “reactive astrocytosis.” This has been defined as the proliferation of astrocytes accompanied by cellular hypertrophy and changes in gene expression following injury to the central nervous system. Yet the significance of that response to disease course is debated. In both human ALS and in the SOD1G93A mouse model of ALS, reactive astrocytosis is a hallmark of the disease—particularly at endstage. The brain also harbors immature progenitors which have the capacity for differentiation into both glial and neuronal lineages. We examined whether glial progenitors in the adult spinal cord of SOD1G93A mice become activated and contribute the astroglial response observed in this model. We found that the glial progenitor proteoglycan NG2 is increased in parallel with GFAP during the symptomatic phase of the disease and that there is a differential in vitro response of SOD1G93A glial progenitors to inflammatory cytokines when compared to wildtype mouse glial progenitors. This response was accompanied by the proliferation of glial progenitors but not mature GFAP+ astrocytes, through the translocation of the transcription factor Olig2 from the nucleus to the cytoplasm—resulting in astrocyte differentiation. These data suggest that adult glial progenitors from SOD1G93A mice differentially respond to inflammatory cytokines and contribute to the observed reactive astrocytosis observed in SOD1G93A mouse lumbar spinal cord. © 2007 Wiley-Liss, Inc.
Progress in Neurobiology, 2007
The lineages of both astrocytes and oligodendrocytes have been popular areas of research in the l... more The lineages of both astrocytes and oligodendrocytes have been popular areas of research in the last decade. The source of these cells in the mature CNS is relevant to the study of the cellular response to CNS injury. A significant amount of evidence exists to suggest that resident precursor cells proliferate and differentiate into mature glial cells that facilitate tissue repair and recovery. Additionally, the re-entry of mature astrocytes into the cell cycle can also contribute to the pool of new astrocytes that are observed following CNS injury. In order to better understand the glial response to injury in the adult CNS we must revisit the astrocyte-oligodendrocyte relationship. Specifically, we argue that there is a common glial precursor cell from which astrocytes and oligodendrocytes differentiate and that the microenvironment surrounding the injury determines the fate of the stimulated precursor cell. Ideally, better understanding the origin of new glial cells in the injured CNS will facilitate the development of therapeutics targeted to alter the glial response in a beneficial way. #