Jinyong Hahn - Academia.edu (original) (raw)

Uploads

Papers by Jinyong Hahn

Research paper thumbnail of Quantile Regression with Panel Data

We propose a generalization of the linear quantile regression model to accommodate possibilities ... more We propose a generalization of the linear quantile regression model to accommodate possibilities afforded by panel data. Specifically, we extend the correlated random coefficients representation of linear quantile regression (e.g., Koenker, 2005; Section 2.6). We show that panel data allows the econometrician to (i) introduce dependence between the regressors and the random coefficients and (ii) weaken the assumption of comonotonicity across them (i.e., to enrich the structure of allowable dependence between different coefficients). We adopt a "fixed effects" approach, leaving any dependence between the regressors and the random coefficients unmodelled. We motivate different notions of quantile partial effects in our model and study their identification.

Research paper thumbnail of The Asymptotic Variance of Semiparametric Estimators with Generated Regressors

We study the asymptotic distribution of three-step estimators of a finite dimensional parameter v... more We study the asymptotic distribution of three-step estimators of a finite dimensional parameter vector where the second step consists of one or more nonparametric regressions on a regressor that is estimated in the first step. The first step estimator is either parametric or non-parametric. Using Newey’s (1994) path-derivative method we derive the contribution of the first step estimator to the influence function. In this derivation it is important to account for the dual role that the first step estimator plays in the second step non-parametric regression, i.e., that of conditioning variable and that of argument. We consider three examples in more detail: the partial linear regression model estimator with a generated regressor, the Heckman, Ichimura and Todd (1998) estimator of the Average Treatment Effect and a semi-parametric control variable estimator.

Research paper thumbnail of Quantile Regression with Panel Data

We propose a generalization of the linear quantile regression model to accommodate possibilities ... more We propose a generalization of the linear quantile regression model to accommodate possibilities afforded by panel data. Specifically, we extend the correlated random coefficients representation of linear quantile regression (e.g., Koenker, 2005; Section 2.6). We show that panel data allows the econometrician to (i) introduce dependence between the regressors and the random coefficients and (ii) weaken the assumption of comonotonicity across them (i.e., to enrich the structure of allowable dependence between different coefficients). We adopt a "fixed effects" approach, leaving any dependence between the regressors and the random coefficients unmodelled. We motivate different notions of quantile partial effects in our model and study their identification.

Research paper thumbnail of The Asymptotic Variance of Semiparametric Estimators with Generated Regressors

We study the asymptotic distribution of three-step estimators of a finite dimensional parameter v... more We study the asymptotic distribution of three-step estimators of a finite dimensional parameter vector where the second step consists of one or more nonparametric regressions on a regressor that is estimated in the first step. The first step estimator is either parametric or non-parametric. Using Newey’s (1994) path-derivative method we derive the contribution of the first step estimator to the influence function. In this derivation it is important to account for the dual role that the first step estimator plays in the second step non-parametric regression, i.e., that of conditioning variable and that of argument. We consider three examples in more detail: the partial linear regression model estimator with a generated regressor, the Heckman, Ichimura and Todd (1998) estimator of the Average Treatment Effect and a semi-parametric control variable estimator.

Log In