Joan Fusco - Academia.edu (original) (raw)
Papers by Joan Fusco
npj vaccines, Jun 10, 2023
Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycopr... more Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycoproteins have proven to be remarkably effective vaccines. Indeed, rVSV-EBOV, which expresses the Ebola virus (EBOV) glycoprotein, recently received clinical approval in the United States and Europe for its ability to prevent EBOV disease. Analogous rVSV vaccines expressing glycoproteins of different human-pathogenic filoviruses have also demonstrated efficacy in pre-clinical evaluations, yet these vaccines have not progressed far beyond research laboratories. In the wake of the most recent outbreak of Sudan virus (SUDV) in Uganda, the need for proven countermeasures was made even more acute. Here we demonstrate that an rVSV-based vaccine expressing the SUDV glycoprotein (rVSV-SUDV) generates a potent humoral immune response that protects guinea pigs from SUDV disease and death. Although the cross-protection generated by rVSV vaccines for different filoviruses is thought to be limited, we wondered whether rVSV-EBOV might also provide protection against SUDV, which is closely related to EBOV. Surprisingly, nearly 60% of guinea pigs that were vaccinated with rVSV-EBOV and challenged with SUDV survived, suggesting that rVSV-EBOV offers limited protection against SUDV, at least in the guinea pig model. These results were confirmed by a back-challenge experiment in which animals that had been vaccinated with rVSV-EBOV and survived EBOV challenge were inoculated with SUDV and survived. Whether these data are applicable to efficacy in humans is unknown, and they should therefore be interpreted cautiously. Nevertheless, this study confirms the potency of the rVSV-SUDV vaccine and highlights the potential for rVSV-EBOV to elicit a cross-protective immune response.
Frontiers in Immunology
IntroductionImmune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis... more IntroductionImmune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis (rVSV) vector vaccine against Nipah virus (NiV) disease, were investigated in the African green monkey (AGM) model. Neutralizing antibody to NiV has been proposed as the principal mediator of protection against future NiV infection.MethodsTwo approaches were used to determine the correlation between neutralizing antibody levels and outcomes following a severe (1,000 median lethal doses) intranasal/intratracheal (IN/IT) challenge with NiV (Bangladesh): (1) reduction in vaccine dose given 28 days before challenge and (2) challenge during the early phase of the antibody response to the vaccine.ResultsReduction in vaccine dose to very low levels led to primary vaccine failure rather than a sub-protective level of antibody. All AGMs vaccinated with the nominal clinical dose (2 × 107 pfu) at 21, 14, or 7 days before challenge survived. AGMs vaccinated at 21 days before challenge had neutraliz...
Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycopr... more Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycoproteins have proven to be remarkably effective vaccines. Indeed, rVSV-EBOV, which expresses the Ebola virus (EBOV) glycoprotein, recently received clinical approval in the United States and Europe for its ability to prevent EBOV disease. Analogous rVSV vaccines expressing the glycoproteins of different human-pathogenic filoviruses have also been developed and shown to be effective in pre-clinical evaluations, yet these vaccine candidates have not progressed far beyond research laboratories. As the current outbreak of Sudan virus (SUDV) intensifies in Uganda, the need for proven countermeasures is rendered even more acute. Here we demonstrate that an rVSV-based vaccine expressing the SUDV glycoprotein (rVSV-SUDV) generates a potent humoral immune response that completely protects guinea pigs from SUDV disease and death. Although the cross-protection generated by rVSV vaccines for different...
PLOS Pathogens
The emergence of Marburg virus (MARV) in Guinea and Ghana triggered the assembly of the MARV vacc... more The emergence of Marburg virus (MARV) in Guinea and Ghana triggered the assembly of the MARV vaccine “MARVAC” consortium representing leaders in the field of vaccine research and development aiming to facilitate a rapid response to this infectious disease threat. Here, we discuss current progress, challenges, and future directions for MARV vaccines.
Vaccines
Marburg virus (MARV) is a negative-sense, single-stranded RNA virus that belongs to the Filovirid... more Marburg virus (MARV) is a negative-sense, single-stranded RNA virus that belongs to the Filoviridae family. Despite having caused numerous outbreaks of severe hemorrhagic fever with high case fatality rates, there are still no clinically approved therapeutics or vaccines to treat or prevent MARV disease. Recombinant vesicular stomatitis viruses (rVSVs) expressing heterologous viral glycoproteins have shown remarkable promise as live-attenuated vaccine vectors, with an rVSV-based Ebola virus vaccine having received regulatory approval in the United States and numerous other countries. Analogous rVSV vaccine vectors have also been developed for MARV and have shown efficacy in several preclinical studies conducted in nonhuman primates. Here, we used a guinea pig model to confirm the protective efficacy of a cloned, rVSV-based candidate vaccine, termed PHV01, expressing the MARV variant Angola glycoprotein. Our results demonstrated that a single dose (2 × 106 PFU) of vaccine administere...
The Lancet. Infectious diseases, Aug 9, 2017
The 2014 Zaire Ebola virus outbreak highlighted the need for a safe, effective vaccine with a rap... more The 2014 Zaire Ebola virus outbreak highlighted the need for a safe, effective vaccine with a rapid onset of protection. We report the safety and immunogenicity of the recombinant vesicular stomatitis virus-Zaire Ebola virus envelope glycoprotein vaccine (rVSV∆G-ZEBOV-GP) across a 6 log10 dose range in two sequential cohorts. In this phase 1b double-blind, placebo-controlled, dose-response study we enrolled and randomly assigned healthy adults (aged 18-61 years) at eight study sites in the USA to receive a single injection of vaccine or placebo, administered by intramuscular injection. In cohort 1, participants were assigned to receive 3 × 10(3), 3 × 10(4), 3 × 10(5), or 3 × 10(6) PFU doses of rVSV∆G-ZEBOV-GP or placebo. In cohort 2, participants were assigned to receive 3 × 10(6), 9 × 10(6), 2 × 10(7), or 1 × 10(8) PFU doses of rVSV∆G-ZEBOV-GP or placebo. Participants were centrally allocated by the study statistician to vaccine groups or placebo through computer-generated randomis...
PLOS Pathogens
Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality a... more Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 w...
Vaccine: X, 2019
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evalu... more The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. A recent publication by the V3SWG described live, attenuated, recombinant vesicular stomatitis virus (rVSV) as a chimeric virus vaccine for HIV-1 (Clarke et al., 2016). The rVSV vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features of the rVSV vector system, followed by a template with details on the safety and characteristics of a rVSV vaccine against Zaire ebolavirus (ZEBOV). The rVSV-ZEBOV vaccine is a live, replication competent vector in which the VSV glycoprotein (G) gene is replaced with the glycoprotein (GP) gene of ZEBOV. Multiple copies of GP are expressed and assembled into the viral envelope responsible for inducing protective immunity. The vaccine (designated V920) was originally constructed by the National Microbiology Laboratory, Public Health Agency of Canada, further developed by NewLink Genetics Corp. and Merck & Co., and is now in final stages of registration by Merck. The vaccine is attenuated by deletion of the principal virulence factor of VSV (the G protein), which also removes the primary target for anti-vector immunity. The V920 vaccine caused no toxicities after intramuscular (IM) or intracranial injection of nonhuman primates and no reproductive or developmental toxicity in a rat model. In multiple studies, cynomolgus macaques immunized IM with a wide range of virus doses rapidly developed ZEBOV-specific antibodies measured in IgG ELISA and neutralization assays and were fully protected against lethal challenge with ZEBOV virus. Over 20,000 people have received the vaccine in clinical trials; the vaccine has proven to be safe and well tolerated. During the first few days after vaccination, many vaccinees experience a mild acute-phase reaction with fever, headache, myalgia, and arthralgia of short duration; this period is associated with a low-level viremia, activation of anti-viral genes, and increased levels of chemokines and cytokines. Oligoarthritis and rash appearing in the second week occur at a low incidence, and are typically mild-moderate in severity and self-limited. V920 vaccine was used in a Phase III efficacy trial during the West African Ebola epidemic in 2015, showing 100% protection against Ebola Virus Disease, and it has subsequently been deployed for emergency control of Ebola outbreaks in central Africa. The template
Vaccine, 1999
We evaluated the safety and immunogenicity of a single dose of a new serogroup C O-deacylated men... more We evaluated the safety and immunogenicity of a single dose of a new serogroup C O-deacylated meningococcal polysaccharide±tetanus toxoid conjugate vaccine in 30 healthy adult volunteers. The vaccine was well tolerated with no serious adverse events and minimal local reactions and systemic symptoms. All subjects developed a fourfold or greater increase in serum bactericidal antibody (SBA) to serogroup C meningococcus. SBA geometric mean titre increased from 11 to 3649 ( p < 0.001). Serogroup C-speci®c IgG levels increased postvaccination from 0.65 to 17.02 mg/ml ( p < 0.001). Bactericidal titres pre-and postimmunisation showed signi®cant correlation with serogroup C-speci®c IgG (r 2 =0.693). Antibody levels fell by 6 months postvaccination, however, meningococcal C IgG avidity increased indicating the successful induction of a T-celldependent antibody response. Conclusion: meningococcal C-tetanus toxoid conjugate vaccine is immunogenic and well tolerated in healthy adults. #
Clinical Infectious Diseases, 2001
During 1979-1995, there was no vaccination against pertussis in Sweden. With the aim of studying ... more During 1979-1995, there was no vaccination against pertussis in Sweden. With the aim of studying the epidemiology and transmission of pertussis, mass vaccination with pertussis toxoid of children born during the 1990s was instituted in the Göteborg area (population, 778,597) in 1995. Infants were offered 3 doses of pertussis toxoid combined with diphtheria and tetanus toxoids. Children aged &amp;gt; or =1 year were offered 3 doses of pertussis toxoid alone. From June 1995 through February 1999, 167,810 doses of pertussis toxoid were given to 61,219 children born during the 1990s (56% received 3 doses). The number of Bordetella pertussis isolates per year declined from 1214 (1993-1995) to 64 (January 1997 through June 1999; P&amp;lt;.0001), and hospitalizations due to pertussis declined from 62 to 5 (P&amp;lt;.0001). Significant decreases in B. pertussis isolates and hospitalizations occurred in all age groups, including adults and nonvaccinated infants. Thus, mass vaccination of children with pertussis toxoid decreases spread of B. pertussis in the population.
Biologicals, 1999
NAVA's acellular pertussis vaccine is based on highly purified pertussis toxin (PT) inact... more NAVA's acellular pertussis vaccine is based on highly purified pertussis toxin (PT) inactivated with H(2)O(2). PT was analysed using advanced biochemical methodology including mass spectroscopy (LC/MS), yielding mass and peptide mapping information on the subunits. Pertactin, adenylate cyclase, and Fim 1, 2 were below detection levels and only trace amounts of filamentous haemagglutinin (FHA) have been identified as a minor impurity. The vaccine does not induce anti-FHA antibodies during the course of a 3-dose primary immunization series in infants. B and T cell epitopes are preserved to a higher extent after H(2)O(2)detoxification when compared with chemical inactivation with formaldehyde, thus providing new information explaining why vaccines employing formaldehyde detoxified PT may need additional pertussis components added to induce high levels of protection. Anti-PT antibodies generated by NAVA diphtheria, tetanus, and acellular pertussis vaccine (DTaP) showed a positive correlation with protection against WHO-defined pertussis. The safety profiles for these vaccines showed low reactogenicity with no serious adverse events due to the vaccines.
International Journal of Infectious Diseases, 2004
The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine... more The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine for emergency preparedness. In lieu of preparing vaccine in animal skin (the original method), we cloned vaccinia virus (New York City Board of Health strain, Dryvax by plaque purification and amplified the clone in cell culture. The overarching goal was to produce a modern vaccine that was equivalent to the currently licensed Dryvax in its preclinical and clinical properties, and could thus reliably protect humans against smallpox. A variety of clones were evaluated, and many were unacceptably virulent in animal models. One clonal virus (ACAM1000) was selected and produced at clinical grade in MRC-5 human diploid cells. ACAM1000 was comparable to Dryvax in immunogenicity and protective activity but was less neurovirulent for mice and nonhuman primates. To meet requirements for large quantities of vaccine after the events of September 11th 2001, the ACAM1000 master virus seed was used to prepare vaccine (designated ACAM2000) at large scale in Vero cells under serum-free conditions. The genomes of ACAM1000 and ACAM2000 had identical nucleotide sequences, and the vaccines had comparable biological phenotypes. ACAM1000 and ACAM2000 were evaluated in three Phase 1 clinical trials. The vaccines produced major cutaneous reactions and evoked neutralizing antibody and cell-mediated immune responses in the vast majority of subjects and had a reactogenicity profile similar to that of Dryvax.
International Journal of Infectious Diseases, 2004
The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine... more The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine for emergency preparedness. In lieu of preparing vaccine in animal skin (the original method), we cloned vaccinia virus (New York City Board of Health strain, Dryvax by plaque purification and amplified the clone in cell culture. The overarching goal was to produce a modern vaccine that was equivalent to the currently licensed Dryvax in its preclinical and clinical properties, and could thus reliably protect humans against smallpox. A variety of clones were evaluated, and many were unacceptably virulent in animal models. One clonal virus (ACAM1000) was selected and produced at clinical grade in MRC-5 human diploid cells. ACAM1000 was comparable to Dryvax in immunogenicity and protective activity but was less neurovirulent for mice and nonhuman primates. To meet requirements for large quantities of vaccine after the events of September 11th 2001, the ACAM1000 master virus seed was used to prepare vaccine (designated ACAM2000) at large scale in Vero cells under serum-free conditions. The genomes of ACAM1000 and ACAM2000 had identical nucleotide sequences, and the vaccines had comparable biological phenotypes. ACAM1000 and ACAM2000 were evaluated in three Phase 1 clinical trials. The vaccines produced major cutaneous reactions and evoked neutralizing antibody and cell-mediated immune responses in the vast majority of subjects and had a reactogenicity profile similar to that of Dryvax.
npj vaccines, Jun 10, 2023
Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycopr... more Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycoproteins have proven to be remarkably effective vaccines. Indeed, rVSV-EBOV, which expresses the Ebola virus (EBOV) glycoprotein, recently received clinical approval in the United States and Europe for its ability to prevent EBOV disease. Analogous rVSV vaccines expressing glycoproteins of different human-pathogenic filoviruses have also demonstrated efficacy in pre-clinical evaluations, yet these vaccines have not progressed far beyond research laboratories. In the wake of the most recent outbreak of Sudan virus (SUDV) in Uganda, the need for proven countermeasures was made even more acute. Here we demonstrate that an rVSV-based vaccine expressing the SUDV glycoprotein (rVSV-SUDV) generates a potent humoral immune response that protects guinea pigs from SUDV disease and death. Although the cross-protection generated by rVSV vaccines for different filoviruses is thought to be limited, we wondered whether rVSV-EBOV might also provide protection against SUDV, which is closely related to EBOV. Surprisingly, nearly 60% of guinea pigs that were vaccinated with rVSV-EBOV and challenged with SUDV survived, suggesting that rVSV-EBOV offers limited protection against SUDV, at least in the guinea pig model. These results were confirmed by a back-challenge experiment in which animals that had been vaccinated with rVSV-EBOV and survived EBOV challenge were inoculated with SUDV and survived. Whether these data are applicable to efficacy in humans is unknown, and they should therefore be interpreted cautiously. Nevertheless, this study confirms the potency of the rVSV-SUDV vaccine and highlights the potential for rVSV-EBOV to elicit a cross-protective immune response.
Frontiers in Immunology
IntroductionImmune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis... more IntroductionImmune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis (rVSV) vector vaccine against Nipah virus (NiV) disease, were investigated in the African green monkey (AGM) model. Neutralizing antibody to NiV has been proposed as the principal mediator of protection against future NiV infection.MethodsTwo approaches were used to determine the correlation between neutralizing antibody levels and outcomes following a severe (1,000 median lethal doses) intranasal/intratracheal (IN/IT) challenge with NiV (Bangladesh): (1) reduction in vaccine dose given 28 days before challenge and (2) challenge during the early phase of the antibody response to the vaccine.ResultsReduction in vaccine dose to very low levels led to primary vaccine failure rather than a sub-protective level of antibody. All AGMs vaccinated with the nominal clinical dose (2 × 107 pfu) at 21, 14, or 7 days before challenge survived. AGMs vaccinated at 21 days before challenge had neutraliz...
Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycopr... more Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycoproteins have proven to be remarkably effective vaccines. Indeed, rVSV-EBOV, which expresses the Ebola virus (EBOV) glycoprotein, recently received clinical approval in the United States and Europe for its ability to prevent EBOV disease. Analogous rVSV vaccines expressing the glycoproteins of different human-pathogenic filoviruses have also been developed and shown to be effective in pre-clinical evaluations, yet these vaccine candidates have not progressed far beyond research laboratories. As the current outbreak of Sudan virus (SUDV) intensifies in Uganda, the need for proven countermeasures is rendered even more acute. Here we demonstrate that an rVSV-based vaccine expressing the SUDV glycoprotein (rVSV-SUDV) generates a potent humoral immune response that completely protects guinea pigs from SUDV disease and death. Although the cross-protection generated by rVSV vaccines for different...
PLOS Pathogens
The emergence of Marburg virus (MARV) in Guinea and Ghana triggered the assembly of the MARV vacc... more The emergence of Marburg virus (MARV) in Guinea and Ghana triggered the assembly of the MARV vaccine “MARVAC” consortium representing leaders in the field of vaccine research and development aiming to facilitate a rapid response to this infectious disease threat. Here, we discuss current progress, challenges, and future directions for MARV vaccines.
Vaccines
Marburg virus (MARV) is a negative-sense, single-stranded RNA virus that belongs to the Filovirid... more Marburg virus (MARV) is a negative-sense, single-stranded RNA virus that belongs to the Filoviridae family. Despite having caused numerous outbreaks of severe hemorrhagic fever with high case fatality rates, there are still no clinically approved therapeutics or vaccines to treat or prevent MARV disease. Recombinant vesicular stomatitis viruses (rVSVs) expressing heterologous viral glycoproteins have shown remarkable promise as live-attenuated vaccine vectors, with an rVSV-based Ebola virus vaccine having received regulatory approval in the United States and numerous other countries. Analogous rVSV vaccine vectors have also been developed for MARV and have shown efficacy in several preclinical studies conducted in nonhuman primates. Here, we used a guinea pig model to confirm the protective efficacy of a cloned, rVSV-based candidate vaccine, termed PHV01, expressing the MARV variant Angola glycoprotein. Our results demonstrated that a single dose (2 × 106 PFU) of vaccine administere...
The Lancet. Infectious diseases, Aug 9, 2017
The 2014 Zaire Ebola virus outbreak highlighted the need for a safe, effective vaccine with a rap... more The 2014 Zaire Ebola virus outbreak highlighted the need for a safe, effective vaccine with a rapid onset of protection. We report the safety and immunogenicity of the recombinant vesicular stomatitis virus-Zaire Ebola virus envelope glycoprotein vaccine (rVSV∆G-ZEBOV-GP) across a 6 log10 dose range in two sequential cohorts. In this phase 1b double-blind, placebo-controlled, dose-response study we enrolled and randomly assigned healthy adults (aged 18-61 years) at eight study sites in the USA to receive a single injection of vaccine or placebo, administered by intramuscular injection. In cohort 1, participants were assigned to receive 3 × 10(3), 3 × 10(4), 3 × 10(5), or 3 × 10(6) PFU doses of rVSV∆G-ZEBOV-GP or placebo. In cohort 2, participants were assigned to receive 3 × 10(6), 9 × 10(6), 2 × 10(7), or 1 × 10(8) PFU doses of rVSV∆G-ZEBOV-GP or placebo. Participants were centrally allocated by the study statistician to vaccine groups or placebo through computer-generated randomis...
PLOS Pathogens
Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality a... more Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 w...
Vaccine: X, 2019
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evalu... more The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. A recent publication by the V3SWG described live, attenuated, recombinant vesicular stomatitis virus (rVSV) as a chimeric virus vaccine for HIV-1 (Clarke et al., 2016). The rVSV vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features of the rVSV vector system, followed by a template with details on the safety and characteristics of a rVSV vaccine against Zaire ebolavirus (ZEBOV). The rVSV-ZEBOV vaccine is a live, replication competent vector in which the VSV glycoprotein (G) gene is replaced with the glycoprotein (GP) gene of ZEBOV. Multiple copies of GP are expressed and assembled into the viral envelope responsible for inducing protective immunity. The vaccine (designated V920) was originally constructed by the National Microbiology Laboratory, Public Health Agency of Canada, further developed by NewLink Genetics Corp. and Merck & Co., and is now in final stages of registration by Merck. The vaccine is attenuated by deletion of the principal virulence factor of VSV (the G protein), which also removes the primary target for anti-vector immunity. The V920 vaccine caused no toxicities after intramuscular (IM) or intracranial injection of nonhuman primates and no reproductive or developmental toxicity in a rat model. In multiple studies, cynomolgus macaques immunized IM with a wide range of virus doses rapidly developed ZEBOV-specific antibodies measured in IgG ELISA and neutralization assays and were fully protected against lethal challenge with ZEBOV virus. Over 20,000 people have received the vaccine in clinical trials; the vaccine has proven to be safe and well tolerated. During the first few days after vaccination, many vaccinees experience a mild acute-phase reaction with fever, headache, myalgia, and arthralgia of short duration; this period is associated with a low-level viremia, activation of anti-viral genes, and increased levels of chemokines and cytokines. Oligoarthritis and rash appearing in the second week occur at a low incidence, and are typically mild-moderate in severity and self-limited. V920 vaccine was used in a Phase III efficacy trial during the West African Ebola epidemic in 2015, showing 100% protection against Ebola Virus Disease, and it has subsequently been deployed for emergency control of Ebola outbreaks in central Africa. The template
Vaccine, 1999
We evaluated the safety and immunogenicity of a single dose of a new serogroup C O-deacylated men... more We evaluated the safety and immunogenicity of a single dose of a new serogroup C O-deacylated meningococcal polysaccharide±tetanus toxoid conjugate vaccine in 30 healthy adult volunteers. The vaccine was well tolerated with no serious adverse events and minimal local reactions and systemic symptoms. All subjects developed a fourfold or greater increase in serum bactericidal antibody (SBA) to serogroup C meningococcus. SBA geometric mean titre increased from 11 to 3649 ( p < 0.001). Serogroup C-speci®c IgG levels increased postvaccination from 0.65 to 17.02 mg/ml ( p < 0.001). Bactericidal titres pre-and postimmunisation showed signi®cant correlation with serogroup C-speci®c IgG (r 2 =0.693). Antibody levels fell by 6 months postvaccination, however, meningococcal C IgG avidity increased indicating the successful induction of a T-celldependent antibody response. Conclusion: meningococcal C-tetanus toxoid conjugate vaccine is immunogenic and well tolerated in healthy adults. #
Clinical Infectious Diseases, 2001
During 1979-1995, there was no vaccination against pertussis in Sweden. With the aim of studying ... more During 1979-1995, there was no vaccination against pertussis in Sweden. With the aim of studying the epidemiology and transmission of pertussis, mass vaccination with pertussis toxoid of children born during the 1990s was instituted in the Göteborg area (population, 778,597) in 1995. Infants were offered 3 doses of pertussis toxoid combined with diphtheria and tetanus toxoids. Children aged &amp;gt; or =1 year were offered 3 doses of pertussis toxoid alone. From June 1995 through February 1999, 167,810 doses of pertussis toxoid were given to 61,219 children born during the 1990s (56% received 3 doses). The number of Bordetella pertussis isolates per year declined from 1214 (1993-1995) to 64 (January 1997 through June 1999; P&amp;lt;.0001), and hospitalizations due to pertussis declined from 62 to 5 (P&amp;lt;.0001). Significant decreases in B. pertussis isolates and hospitalizations occurred in all age groups, including adults and nonvaccinated infants. Thus, mass vaccination of children with pertussis toxoid decreases spread of B. pertussis in the population.
Biologicals, 1999
NAVA's acellular pertussis vaccine is based on highly purified pertussis toxin (PT) inact... more NAVA's acellular pertussis vaccine is based on highly purified pertussis toxin (PT) inactivated with H(2)O(2). PT was analysed using advanced biochemical methodology including mass spectroscopy (LC/MS), yielding mass and peptide mapping information on the subunits. Pertactin, adenylate cyclase, and Fim 1, 2 were below detection levels and only trace amounts of filamentous haemagglutinin (FHA) have been identified as a minor impurity. The vaccine does not induce anti-FHA antibodies during the course of a 3-dose primary immunization series in infants. B and T cell epitopes are preserved to a higher extent after H(2)O(2)detoxification when compared with chemical inactivation with formaldehyde, thus providing new information explaining why vaccines employing formaldehyde detoxified PT may need additional pertussis components added to induce high levels of protection. Anti-PT antibodies generated by NAVA diphtheria, tetanus, and acellular pertussis vaccine (DTaP) showed a positive correlation with protection against WHO-defined pertussis. The safety profiles for these vaccines showed low reactogenicity with no serious adverse events due to the vaccines.
International Journal of Infectious Diseases, 2004
The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine... more The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine for emergency preparedness. In lieu of preparing vaccine in animal skin (the original method), we cloned vaccinia virus (New York City Board of Health strain, Dryvax by plaque purification and amplified the clone in cell culture. The overarching goal was to produce a modern vaccine that was equivalent to the currently licensed Dryvax in its preclinical and clinical properties, and could thus reliably protect humans against smallpox. A variety of clones were evaluated, and many were unacceptably virulent in animal models. One clonal virus (ACAM1000) was selected and produced at clinical grade in MRC-5 human diploid cells. ACAM1000 was comparable to Dryvax in immunogenicity and protective activity but was less neurovirulent for mice and nonhuman primates. To meet requirements for large quantities of vaccine after the events of September 11th 2001, the ACAM1000 master virus seed was used to prepare vaccine (designated ACAM2000) at large scale in Vero cells under serum-free conditions. The genomes of ACAM1000 and ACAM2000 had identical nucleotide sequences, and the vaccines had comparable biological phenotypes. ACAM1000 and ACAM2000 were evaluated in three Phase 1 clinical trials. The vaccines produced major cutaneous reactions and evoked neutralizing antibody and cell-mediated immune responses in the vast majority of subjects and had a reactogenicity profile similar to that of Dryvax.
International Journal of Infectious Diseases, 2004
The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine... more The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine for emergency preparedness. In lieu of preparing vaccine in animal skin (the original method), we cloned vaccinia virus (New York City Board of Health strain, Dryvax by plaque purification and amplified the clone in cell culture. The overarching goal was to produce a modern vaccine that was equivalent to the currently licensed Dryvax in its preclinical and clinical properties, and could thus reliably protect humans against smallpox. A variety of clones were evaluated, and many were unacceptably virulent in animal models. One clonal virus (ACAM1000) was selected and produced at clinical grade in MRC-5 human diploid cells. ACAM1000 was comparable to Dryvax in immunogenicity and protective activity but was less neurovirulent for mice and nonhuman primates. To meet requirements for large quantities of vaccine after the events of September 11th 2001, the ACAM1000 master virus seed was used to prepare vaccine (designated ACAM2000) at large scale in Vero cells under serum-free conditions. The genomes of ACAM1000 and ACAM2000 had identical nucleotide sequences, and the vaccines had comparable biological phenotypes. ACAM1000 and ACAM2000 were evaluated in three Phase 1 clinical trials. The vaccines produced major cutaneous reactions and evoked neutralizing antibody and cell-mediated immune responses in the vast majority of subjects and had a reactogenicity profile similar to that of Dryvax.