Joost Van Delft - Academia.edu (original) (raw)
Papers by Joost Van Delft
Archives of Toxicology, 2015
high interindividual variation in expression were involved include liver regeneration, inflammato... more high interindividual variation in expression were involved include liver regeneration, inflammatory responses, mitochondrial stress responses, hepatocarcinogenesis, cell cycle, and drug efficacy. Additionally, the interindividual variation in the expression of these genes could be associated with the variability in expression levels of hydroxyl/methoxy-APAP and C8H13O5N-APAP-glucuronide. The before-mentioned metabolites or their derivatives have also been reported in blood of humans exposed to therapeutic APAP doses. Possibly these findings can contribute to elucidating the causative factors of interindividual susceptibility toward APAP.
Toxicology, Jan 2, 2014
Large differences in toxicity responses occur within the human population. In this study we evalu... more Large differences in toxicity responses occur within the human population. In this study we evaluate whether interindividual variation in baseline enzyme activity (EA)/gene expression (GE) levels in liver predispose for the variation in toxicity responses by assessing dose-response relationships for several prototypical hepatotoxicants. Baseline levels of cytochrome-P450 (CYP) GE/EA were measured in precision-cut human liver slices. Slices (n=4-5/compound) were exposed to a dose-range of acetaminophen, aflatoxin B1, benzo(α) pyrene or 2-nitrofluorene. Interindividual variation in induced genotoxicity (COMET-assay and CDKN1A/p21 GE) and cytotoxicity (lactate dehydrogenase-leakage), combined with NQO1- and GSTM1-induced GE-responses for oxidative stress and GE-responses of several CYPs was evaluated. The benchmark dose-approach was applied as a tool to model exposure responses on an individual level. Variation in baseline CYP levels, both GE and EA, can explain variation in compound e...
Biomarkers in medicine, 2014
Current testing models for predicting drug-induced liver injury are inadequate, as they basically... more Current testing models for predicting drug-induced liver injury are inadequate, as they basically under-report human health risks. We present here an approach towards developing pathways based on hepatotoxicity-associated gene groups derived from two types of publicly accessible hepatotoxicity databases, in order to develop drug-induced liver injury biomarker profiles. One human liver 'omics-based and four text-mining-based databases were explored for hepatotoxicity-associated gene lists. Over-representation analysis of these gene lists with a hepatotoxicant-exposed primary human hepatocytes data set showed that human liver 'omics gene lists performed better than text-mining gene lists and the results of the latter differed strongly between databases. However, both types of databases contained gene lists demonstrating biomarker potential. Visualizing those in pathway format may aid in interpreting the biomolecular background. We conclude that exploiting existing and openly a...
Toxicology and Applied Pharmacology, 2007
Ochratoxin A (OTA) is a mycotoxin often found in cereals and agricultural products. There is uneq... more Ochratoxin A (OTA) is a mycotoxin often found in cereals and agricultural products. There is unequivocal evidence of renal carcinogenicity of OTA in male rats, although the mechanism of action is unknown. At present, available data support an epigenetic mechanism (DNA non-reactive) resulting from oxidative stress and cytotoxicity, because a direct OTA interaction with DNA has not been demonstrated. Genotoxic mechanism (DNA-reactive vs. DNA non-reactive) may have implications on human risk assessment. Therefore, the aim of the present work was to identify biological pathways modulated by OTA in vitro in a human renal cell line (HK-2) to contribute to the elucidation of the mechanism of OTA toxicity. For that purpose, cells were exposed to 50 microM OTA during 6 and 24 h, and gene expression profiles were analyzed using Affymetrix Human Genome U133 A 2.0 Gene Chips. Under the same experimental conditions, genotoxicity was evaluated by the modified comet assay using FPG and Endo III to detect oxidative DNA damage, and intracellular ROS level by the H(2)DCF assay. After 6 h, with slight cytotoxicity (83% survival), genes involved in mitochondrial electron transport chain were up-regulated; and after 24 h, with a more pronounced cytotoxicity (51% survival), genes implicated in oxidative stress response were also up-regulated. Increase in intracellular ROS level and oxidative DNA damage was evident at both exposure times being more pronounced with high cytotoxicity. On the contrary, up-regulation of genes implicated in DNA damage response, as cell cycle control or apoptosis, was not detected at any exposure time. In conclusion, these results support a DNA non-reactive mechanism of OTA genotoxicity.
Toxicology and Applied Pharmacology, 2011
The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on... more The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 μM) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.
Toxicology and Applied Pharmacology, 2008
Ochratoxin A (OTA), a naturally occurring mycotoxin, is nephrotoxic in all animal species tested ... more Ochratoxin A (OTA), a naturally occurring mycotoxin, is nephrotoxic in all animal species tested and is considered a potent renal carcinogen, particularly in male rats. Its mechanism of toxicity is still unknown, although oxidative stress appears to be a plausible mechanism. Therefore, the objective of this study was to identify the biological pathways that are modulated in vivo by OTA in male F344 rats in order to gain further insight into its mechanism of renal toxicity. Rats were gavaged daily with OTA (500 microg/kg bw) and gene expression profiles in target and non-target organs were analyzed after 7 and 21 days administration. As was expected, a time-dependent increase of OTA concentrations was found in plasma, kidney and liver, with the concentrations found in both tissues being quite similar. However, histopathological examinations only revealed changes in kidney; signs of nephrotoxicity involving single cell necrosis and karyomegalic nuclei were observed in the treated rats. The number of differentially expressed genes in kidney was much higher than in liver (541 versus 11 at both time points). Several similarities were observed with other in vivo gene expression data. However, great differences were found with previous in vitro gene expression data, with the exception of DNA damage response which was not observed at mRNA level in any of our study conditions. Down-regulation was the predominant effect. Oxidative stress response pathway and genes involved in metabolism and transport were inhibited at both time points. RGN (regucalcin) - a gene implicated in calcium homeostasis - was strongly inhibited at both time points and genes implicated in cell survival and proliferation were up-regulated at day 21. Moreover, translation factors and annexin genes were up-regulated at both time points. Apart from oxidative stress, alterations of the calcium homeostasis and cytoskeleton structure may be present at the first events of OTA toxicity.
Toxicology, 2011
Fig. 1. qRT-PCR characterisation of cell clones differentiated in the presence of vehicle only (V... more Fig. 1. qRT-PCR characterisation of cell clones differentiated in the presence of vehicle only (VO), 17-estradiol (ES) or di-butyl-phthalate (DBP) for 4 days (D4), 8 days (D8) or 12 days (D12).
Toxicological Sciences, 2010
Direct comparison of the hepatoma cell lines HepG2 and HepaRG has previously been performed by on... more Direct comparison of the hepatoma cell lines HepG2 and HepaRG has previously been performed by only evaluating a limited set of genes or proteins. In this study, we examined the whole-genome gene expression of both cell lines before and after exposure to the genotoxic (GTX) carcinogens aflatoxin B1 and benzo[a]pyrene and the nongenotoxic (NGTX) carcinogens cyclosporin A, 17b-estradiol, and 2,3,7,8-tetrachlorodibenzo-paradioxin for 12 and 48 h. Before exposure, this analysis revealed an extensive network of genes and pathways, which were regulated differentially for each cell line. The comparison of the basal gene expression between HepG2, HepaRG, primary human hepatocytes (PHH), and liver clearly showed that HepaRG resembles PHH and liver the most. After exposure to the GTX and NGTX carcinogens, for both cell lines, common pathways were found that are important in carcinogenesis, for example, cell cycle regulation and apoptosis. However, also clear differences between exposed HepG2 and HepaRG were observed, and these are related to common metabolic processes, immune response, and transcription processes. Furthermore, HepG2 performs better in discriminating between GTX and NGTX carcinogens. In conclusion, these results have shown that HepaRG is a more suited in vitro liver model for biological interpretations of the effects of exposure to chemicals, whereas HepG2 is a more promising in vitro liver model for classification studies using the toxicogenomics approach. Although, it should be noted that only five carcinogens were used in this study.
Toxicological Sciences, 2010
The embryonic stem cell test (EST) has been designed to predict developmental toxicity based upon... more The embryonic stem cell test (EST) has been designed to predict developmental toxicity based upon compound-induced inhibition of embryonic stem cell (ESC) differentiation. The end point scoring, the test duration, and the definition of the predictivity and the applicability domain require improvements to facilitate implementation of the EST into regulatory testing strategies. The use of transcriptomics to study compound-induced differentiation modulation may improve the EST in each of these aspects. ESC differentiation was induced, and cell samples were collected after 0, 24, and 48 h of differentiation. Additionally, samples were collected that were 24 h exposed to one of five developmentally toxic compounds or a nondevelopmentally toxic compound. All samples were hybridized to Affymetrix GeneChips, and analyses revealed that 26 genes were significantly regulated both during ESC differentiation and by exposure to each of the developmentally toxic compounds tested. Using principal component analysis, we defined a ''differentiation track'' on the basis of this gene list, which represents ESC differentiation. We showed that significant deviation from the differentiation track was in line with the developmental toxic properties of the compounds. The significance of deviation was analyzed using the leave-one-out cross-validation, which showed a favorable prediction of toxicity in the system. Our findings show that gene expression signatures can be used to identify developmental toxicant-induced differentiation modulation. In addition, studying compound-induced effects at an early stage of differentiation combined with transcriptomics leads to increased objectivity in determining differentiation inhibition and to a reduction of the test duration. Furthermore, this approach may improve the predictivity and applicability domain of the EST.
Toxicological Sciences, 2010
The murine embryonic stem cell test (EST) is an alternative testing method designed to assess pot... more The murine embryonic stem cell test (EST) is an alternative testing method designed to assess potential developmental toxicity of compounds. The implementation of transcriptomics in the EST has been shown to reduce the culture duration and improve endpoint evaluation and is expected to result in an enhanced predictability and definition of the applicability domain. We evaluated the identification of developmental toxicity in the EST using two gene sets (''Van_Dartel_heartdiff_24h'' and ''EST biomarker genes'') defined in our earlier studies. Nonexposed embryonic stem cells (ESC) differentiation cultures were sampled 0, 24, and 48 h after initiation of differentiation. Additionally, cultures exposed to 12 diverse well-characterized positive and negative developmental toxicants were isolated 24 h after the onset of exposure. Inhibition of ESC differentiation was evaluated in parallel by morphological scoring on culture day 10. Transcriptomics analysis was conducted using the Affymetrix Gene Chips platform. We applied principal component analysis on the basis of the two predefined gene sets to define the ''differentiation track'' that represents ESC differentiation. The significance of derivations in the gene expression-based differentiation track because of compound exposures were evaluated to determine developmental toxicity of tested compounds. We successfully predicted developmental toxicity using transcriptomics for 83% (10/12) and 67% (8/12) of the compounds, respectively, using the two predefined gene sets (''Van_Dartel_heartdiff_24h'' and ''EST biomarker genes''). Our study suggests that the application of transcriptomics may improve the applicability of the EST for the prediction of the developmental toxicity of chemicals.
Mutagenesis, 2011
The conventional in vitro assays for genotoxicity assessment of chemicals are characterised by a ... more The conventional in vitro assays for genotoxicity assessment of chemicals are characterised by a high false-positive rate, thus failing to correctly predict their in vivo genotoxic effects. This study aimed to identify the cellular mechanisms induced by the false-positive genotoxins quercetin, 8-Hydroxyquinoline and 17-beta oestradiol in comparison to true genotoxins and non-genotoxins, by combining in vitro phenotypic parameters with transcriptomics data from HepG2 cells. The effects of these compounds on the phosphorylation of H2AX, cell cycle distribution and whole genome gene expression following treatment for 12, 24 and 48 h were compared with the effects of true genotoxins [benzo[a]pyrene and aflatoxin B1] and non-genotoxins (2,3,7,8-tetrachlorodibenzodioxin, cyclosporin A and ampicillin C). Quercetin induced similar phenotypic effects as true genotoxins and to some extent similar gene expression alterations. Different gene expression changes were also observed, including the up-regulation of DNA repair-related genes. 8-Hydroxyquinoline and 17-beta oestradiol showed no similarities to the true genotoxins at both the phenotypic and the transcriptomic level. In a classification approach, classifiers were selected to discriminate between genotoxins and non-genotoxins. Subsequent analysis for the false-positive compounds showed quercetin to be predicted as genotoxic and 8-hydroxyquinoline and 17-beta oestradiol as non-genotoxic. Our results support that transcriptomics analysis of compound effects in HepG2 leads to similar results with phenotypic analysis and provides additional mechanistic information. Therefore, combined evaluation of gene expression alterations and relevant functional end points using HepG2 cells may contribute to the better understanding of modes-of-action of chemicals and the correct evaluation of their genotoxic properties.
Mutagenesis, 2013
The toxic mechanisms of cisplatin have been frequently studied in many species and in vitro cell ... more The toxic mechanisms of cisplatin have been frequently studied in many species and in vitro cell models. The Netherlands Toxicogenomics Centre focuses on developing in vitro alternatives using genomics technologies for animal-based assays on, e.g. genotoxic hazards. Models such as human hepatocellular carcinoma cell line (HepG2) cells, mouse primary hepatocytes (PMH) and mouse embryonic stem cells (mESC) are used. Our aim was to identify possibly robust conserved mechanisms between these models using cisplatin as model genotoxic agent. Transcriptomic data newly generated from HepG2 cells and PMH exposed to 7 µM cisplatin for 12, 24 and 48 h and 24 and 48 h, respectively, were compared with published data from mESC exposed to 5 µM cisplatin for 2-24 h. Due to differences in response time between models and marginal changes after shorter exposure periods, we focused on 24 and 48 h. At gene level, 44 conserved differentially expressed genes (DEG), involved in processes such as apoptosis, cell cycle, DNA damage response and DNA repair, were found. Functional analysis shows that limited numbers of pathways are conserved. Transcription factor (TF) network analysis indicates 12 common TF networks responding among all models and time points. Four TF, HNF4-α, SP1, c-MYC and p53, capable of regulating ±50% of all DEG, seem of equal importance in all models and exposure periods. Here we showed that transcriptomic responses across several in vitro cell models following exposure to cisplatin are mainly determined by a conserved complex network of 4 TFs. These conserved responses are hypothesised to provide most relevant information for human toxicity prediction and may form the basis for new in vitro alternatives of risk assessment.
Carcinogenesis, 2012
The lack of accurate in vitro assays for predicting in vivo toxicity of chemicals together with n... more The lack of accurate in vitro assays for predicting in vivo toxicity of chemicals together with new legislations demanding replacement and reduction of animal testing has triggered the development of alternative methods. This study aimed at developing a transcriptomics-based in vitro prediction assay for in vivo genotoxicity. Transcriptomics changes induced in the human liver cell line HepG2 by 34 compounds after treatment for 12, 24, and 48 h were used for the selection of gene-sets that are capable of discriminating between in vivo genotoxins (GTX) and in vivo nongenotoxins (NGTX). By combining transcriptomics with publicly available results for these chemicals from standard in vitro genotoxicity studies, we developed several prediction models. These models were validated by using an additional set of 28 chemicals. The best prediction was achieved after stratification of chemicals according to results from the Ames bacterial gene mutation assay prior to transcriptomics evaluation after 24 h of treatment. A total of 33 genes were selected for discriminating GTX from NGTX for Ames-positive chemicals and 22 for Ames-negative chemicals. Overall, this method resulted in 89% accuracy and 91% specificity, thereby clearly outperforming the standard in vitro test battery. Transcription factor network analysis revealed HNF3a, HNF4a, HNF6, androgen receptor, and SP1 as main factors regulating the expression of classifiers for Ames-positive chemicals. Thus, the classical bacterial gene mutation assay in combination with in vitro transcriptomics in HepG2 is proposed as an upgraded in vitro approach for predicting in vivo genotoxicity of chemicals holding a great promise for reducing animal experimentations on genotoxicity.
Archives of Toxicology, 2011
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the m... more The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, nongovernmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In
Archives of Toxicology, 2012
The concept of mechanistic toxicogenomics implies that compound-induced changes in gene expressio... more The concept of mechanistic toxicogenomics implies that compound-induced changes in gene expression profiles provide valuable information about their mode of action. A growing number of research groups have presented evidence that whole-genome gene expression profiling techniques might be used as tools for in vivo and in vitro generation of gene signatures and elucidation of molecular mechanisms after exposure to toxic compounds. An important issue to be investigated is the in vivo relevance of in vitro-obtained data. In the current study, we compare the gene expression profiles generated in vitro, after exposing conventional and epigenetically stabilized primary rat hepatocytes to well-known genotoxic hepatocarcinogens (aflatoxin B1, 4-(methylnitrosamino)-1-(3pyridyl)-1-butanone and 2-nitrofluorene) with those derived in vivo after oral exposure of rats to these compounds. Similar statistical tools were applied on both sets of data. The major molecular pathways affected in the in vivo setting were DNA damage, detoxification and cell survival response, as previously described. In the conventional hepatocyte cultures, two of the three genotoxicants showed quite similar responses as in vivo with respect to these pathways. The third compound (2-nitrofluorene) revealed in vitro response which was not observed in vivo. In the epigenetically stabilized hepatocytes, in contrast to what was expected, the responses were less relevant for the in vivo situation. This study highlights the importance of in vitro/in vivo comparison of data that are generated using in vitro models and shows that conventional primary rat hepatocyte cultures represent an appropriate in vitro model to retrieve mechanistic information on the exposure to genotoxicants. Keywords Genotoxic carcinogens Á Global gene expression profiling Á In vitro/in vivo relevance Abbreviations 2NF 2-Nitrofluorene NNK 4-(Methylnitrosamino)-1-(3-pyridyl)-1butanone MTT test 3-(4,5-Dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide test AFB1 Aflatoxin B1 Cdna Complementary DNA HepsC Conventional primary rat hepatocyte cultures CO Corn oil CYP Cytochrome P450 DMSO Dimethylsulfoxide EU European Union WhoLi In vivo whole liver IC Inhibitory concentration MC Methylcellulose Nfr N-fold regulation PBS Phosphate-buffered saline Electronic supplementary material The online version of this article (
Archives of Toxicology, 2012
At present, substantial efforts are focused on the development of in vitro assays coupled with ''... more At present, substantial efforts are focused on the development of in vitro assays coupled with ''omics'' technologies for the identification of carcinogenic substances as an alternative to the classical 2-year rodent carcinogenicity bioassay. A prerequisite for the eventual regulatory acceptance of such assays, however, is the in vivo relevance of the observed in vitro findings. In the current study, hepatocarcinogen-induced gene expression profiles generated after the exposure of conventional cultures of primary rat hepatocytes to three non-genotoxic carcinogens (methapyrilene hydrochloride, piperonyl butoxide, and Wy-14643), three genotoxic carcinogens (aflatoxin B1, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-nitrofluorene), and two non-carcinogens (nifedipine and clonidine) are compared with previously obtained in vivo data after oral administration for up to 14 days of the same hepatocarcinogens to rats. In addition to the comparison of deregulated genes and functions per compound between in vivo and in vitro models, the major discriminating cellular pathways found in vivo in livers of exposed rats were examined for deregulation in vitro. Further, in vivo-derived gene signatures for the identification of genotoxic versus non-genotoxic carcinogens are used to classify in vitro-tested hepatocarcinogens and noncarcinogens. In the primary hepatocyte cultures, two out of the three tested genotoxic carcinogens mimicked the in vivo-relevant DNA damage response and were correctly assessed. Exposure to the non-genotoxic hepatocarcinogens, however, triggered a relatively weak response in the in vitro system, with no clear similarities to in vivo. This study contributes to the further optimization of toxicogenomics predictive tools when applied in in vitro settings. Keywords Non-genotoxic carcinogens Á Genotoxic carcinogens Á Global gene expression profiling Á In vitro/in vivo relevance Abbreviations 2NF 2-Nitrofluorene AFB1 Aflatoxin B1 Affin Affinity Apex Apurinic/apyrimidinic endonuclease 1 Assign Assignment Ccnb1 Cell cycle cyclin B1 Cdk1 Cycline-dependent kinase 1 cDNA Complementary DNA CND Clonidine CO Corn oil DMSO Dimethylsulfoxide FN False negative FP False positive GTX Genotoxic HepsC Conventional primary rat hepatocyte cultures IC Inhibitory concentration MC Methylcellulose Electronic supplementary material The online version of this article (
Toxicological Sciences, 2012
Chemical Research in Toxicology, 2015
Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study t... more Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study the effects of human exposure to, e.g., chemical carcinogens at the whole genome level, thus yielding broad-ranging molecular information on possible carcinogenic effects. Since genes do not operate individually but rather through concerted interactions, analyzing and visualizing networks of genes should provide important mechanistic information, especially upon connecting them to functional parameters, such as those derived from measurements of biomarkers for exposure and carcinogenic risk. Conventional methods such as hierarchical clustering and correlation analyses are frequently used to address these complex interactions but are limited as they do not provide directional causal dependence relationships. Therefore, our aim was to apply Bayesian network inference with the purpose of phenotypic anchoring of modified gene expressions. We investigated a use case on transcriptomic responses to cigarette smoking in humans, in association with plasma cotinine levels as biomarkers of exposure and aromatic DNA-adducts in blood cells as biomarkers of carcinogenic risk. Many of the genes that appear in the Bayesian networks surrounding plasma cotinine, and to a lesser extent around aromatic DNA-adducts, hold biologically relevant functions in inducing severe adverse effects of smoking. In conclusion, this study shows that Bayesian network inference enables unbiased phenotypic anchoring of transcriptomics responses. Furthermore, in all inferred Bayesian networks several dependencies are found which point to known but also to new relationships between the expression of specific genes, cigarette smoke exposure, DNA damaging-effects, and smoking-related diseases, in particular associated with apoptosis, DNA repair, and tumor suppression, as well as with autoimmunity.
Archives of Toxicology, 2015
high interindividual variation in expression were involved include liver regeneration, inflammato... more high interindividual variation in expression were involved include liver regeneration, inflammatory responses, mitochondrial stress responses, hepatocarcinogenesis, cell cycle, and drug efficacy. Additionally, the interindividual variation in the expression of these genes could be associated with the variability in expression levels of hydroxyl/methoxy-APAP and C8H13O5N-APAP-glucuronide. The before-mentioned metabolites or their derivatives have also been reported in blood of humans exposed to therapeutic APAP doses. Possibly these findings can contribute to elucidating the causative factors of interindividual susceptibility toward APAP.
Toxicology, Jan 2, 2014
Large differences in toxicity responses occur within the human population. In this study we evalu... more Large differences in toxicity responses occur within the human population. In this study we evaluate whether interindividual variation in baseline enzyme activity (EA)/gene expression (GE) levels in liver predispose for the variation in toxicity responses by assessing dose-response relationships for several prototypical hepatotoxicants. Baseline levels of cytochrome-P450 (CYP) GE/EA were measured in precision-cut human liver slices. Slices (n=4-5/compound) were exposed to a dose-range of acetaminophen, aflatoxin B1, benzo(α) pyrene or 2-nitrofluorene. Interindividual variation in induced genotoxicity (COMET-assay and CDKN1A/p21 GE) and cytotoxicity (lactate dehydrogenase-leakage), combined with NQO1- and GSTM1-induced GE-responses for oxidative stress and GE-responses of several CYPs was evaluated. The benchmark dose-approach was applied as a tool to model exposure responses on an individual level. Variation in baseline CYP levels, both GE and EA, can explain variation in compound e...
Biomarkers in medicine, 2014
Current testing models for predicting drug-induced liver injury are inadequate, as they basically... more Current testing models for predicting drug-induced liver injury are inadequate, as they basically under-report human health risks. We present here an approach towards developing pathways based on hepatotoxicity-associated gene groups derived from two types of publicly accessible hepatotoxicity databases, in order to develop drug-induced liver injury biomarker profiles. One human liver 'omics-based and four text-mining-based databases were explored for hepatotoxicity-associated gene lists. Over-representation analysis of these gene lists with a hepatotoxicant-exposed primary human hepatocytes data set showed that human liver 'omics gene lists performed better than text-mining gene lists and the results of the latter differed strongly between databases. However, both types of databases contained gene lists demonstrating biomarker potential. Visualizing those in pathway format may aid in interpreting the biomolecular background. We conclude that exploiting existing and openly a...
Toxicology and Applied Pharmacology, 2007
Ochratoxin A (OTA) is a mycotoxin often found in cereals and agricultural products. There is uneq... more Ochratoxin A (OTA) is a mycotoxin often found in cereals and agricultural products. There is unequivocal evidence of renal carcinogenicity of OTA in male rats, although the mechanism of action is unknown. At present, available data support an epigenetic mechanism (DNA non-reactive) resulting from oxidative stress and cytotoxicity, because a direct OTA interaction with DNA has not been demonstrated. Genotoxic mechanism (DNA-reactive vs. DNA non-reactive) may have implications on human risk assessment. Therefore, the aim of the present work was to identify biological pathways modulated by OTA in vitro in a human renal cell line (HK-2) to contribute to the elucidation of the mechanism of OTA toxicity. For that purpose, cells were exposed to 50 microM OTA during 6 and 24 h, and gene expression profiles were analyzed using Affymetrix Human Genome U133 A 2.0 Gene Chips. Under the same experimental conditions, genotoxicity was evaluated by the modified comet assay using FPG and Endo III to detect oxidative DNA damage, and intracellular ROS level by the H(2)DCF assay. After 6 h, with slight cytotoxicity (83% survival), genes involved in mitochondrial electron transport chain were up-regulated; and after 24 h, with a more pronounced cytotoxicity (51% survival), genes implicated in oxidative stress response were also up-regulated. Increase in intracellular ROS level and oxidative DNA damage was evident at both exposure times being more pronounced with high cytotoxicity. On the contrary, up-regulation of genes implicated in DNA damage response, as cell cycle control or apoptosis, was not detected at any exposure time. In conclusion, these results support a DNA non-reactive mechanism of OTA genotoxicity.
Toxicology and Applied Pharmacology, 2011
The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on... more The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 μM) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.
Toxicology and Applied Pharmacology, 2008
Ochratoxin A (OTA), a naturally occurring mycotoxin, is nephrotoxic in all animal species tested ... more Ochratoxin A (OTA), a naturally occurring mycotoxin, is nephrotoxic in all animal species tested and is considered a potent renal carcinogen, particularly in male rats. Its mechanism of toxicity is still unknown, although oxidative stress appears to be a plausible mechanism. Therefore, the objective of this study was to identify the biological pathways that are modulated in vivo by OTA in male F344 rats in order to gain further insight into its mechanism of renal toxicity. Rats were gavaged daily with OTA (500 microg/kg bw) and gene expression profiles in target and non-target organs were analyzed after 7 and 21 days administration. As was expected, a time-dependent increase of OTA concentrations was found in plasma, kidney and liver, with the concentrations found in both tissues being quite similar. However, histopathological examinations only revealed changes in kidney; signs of nephrotoxicity involving single cell necrosis and karyomegalic nuclei were observed in the treated rats. The number of differentially expressed genes in kidney was much higher than in liver (541 versus 11 at both time points). Several similarities were observed with other in vivo gene expression data. However, great differences were found with previous in vitro gene expression data, with the exception of DNA damage response which was not observed at mRNA level in any of our study conditions. Down-regulation was the predominant effect. Oxidative stress response pathway and genes involved in metabolism and transport were inhibited at both time points. RGN (regucalcin) - a gene implicated in calcium homeostasis - was strongly inhibited at both time points and genes implicated in cell survival and proliferation were up-regulated at day 21. Moreover, translation factors and annexin genes were up-regulated at both time points. Apart from oxidative stress, alterations of the calcium homeostasis and cytoskeleton structure may be present at the first events of OTA toxicity.
Toxicology, 2011
Fig. 1. qRT-PCR characterisation of cell clones differentiated in the presence of vehicle only (V... more Fig. 1. qRT-PCR characterisation of cell clones differentiated in the presence of vehicle only (VO), 17-estradiol (ES) or di-butyl-phthalate (DBP) for 4 days (D4), 8 days (D8) or 12 days (D12).
Toxicological Sciences, 2010
Direct comparison of the hepatoma cell lines HepG2 and HepaRG has previously been performed by on... more Direct comparison of the hepatoma cell lines HepG2 and HepaRG has previously been performed by only evaluating a limited set of genes or proteins. In this study, we examined the whole-genome gene expression of both cell lines before and after exposure to the genotoxic (GTX) carcinogens aflatoxin B1 and benzo[a]pyrene and the nongenotoxic (NGTX) carcinogens cyclosporin A, 17b-estradiol, and 2,3,7,8-tetrachlorodibenzo-paradioxin for 12 and 48 h. Before exposure, this analysis revealed an extensive network of genes and pathways, which were regulated differentially for each cell line. The comparison of the basal gene expression between HepG2, HepaRG, primary human hepatocytes (PHH), and liver clearly showed that HepaRG resembles PHH and liver the most. After exposure to the GTX and NGTX carcinogens, for both cell lines, common pathways were found that are important in carcinogenesis, for example, cell cycle regulation and apoptosis. However, also clear differences between exposed HepG2 and HepaRG were observed, and these are related to common metabolic processes, immune response, and transcription processes. Furthermore, HepG2 performs better in discriminating between GTX and NGTX carcinogens. In conclusion, these results have shown that HepaRG is a more suited in vitro liver model for biological interpretations of the effects of exposure to chemicals, whereas HepG2 is a more promising in vitro liver model for classification studies using the toxicogenomics approach. Although, it should be noted that only five carcinogens were used in this study.
Toxicological Sciences, 2010
The embryonic stem cell test (EST) has been designed to predict developmental toxicity based upon... more The embryonic stem cell test (EST) has been designed to predict developmental toxicity based upon compound-induced inhibition of embryonic stem cell (ESC) differentiation. The end point scoring, the test duration, and the definition of the predictivity and the applicability domain require improvements to facilitate implementation of the EST into regulatory testing strategies. The use of transcriptomics to study compound-induced differentiation modulation may improve the EST in each of these aspects. ESC differentiation was induced, and cell samples were collected after 0, 24, and 48 h of differentiation. Additionally, samples were collected that were 24 h exposed to one of five developmentally toxic compounds or a nondevelopmentally toxic compound. All samples were hybridized to Affymetrix GeneChips, and analyses revealed that 26 genes were significantly regulated both during ESC differentiation and by exposure to each of the developmentally toxic compounds tested. Using principal component analysis, we defined a ''differentiation track'' on the basis of this gene list, which represents ESC differentiation. We showed that significant deviation from the differentiation track was in line with the developmental toxic properties of the compounds. The significance of deviation was analyzed using the leave-one-out cross-validation, which showed a favorable prediction of toxicity in the system. Our findings show that gene expression signatures can be used to identify developmental toxicant-induced differentiation modulation. In addition, studying compound-induced effects at an early stage of differentiation combined with transcriptomics leads to increased objectivity in determining differentiation inhibition and to a reduction of the test duration. Furthermore, this approach may improve the predictivity and applicability domain of the EST.
Toxicological Sciences, 2010
The murine embryonic stem cell test (EST) is an alternative testing method designed to assess pot... more The murine embryonic stem cell test (EST) is an alternative testing method designed to assess potential developmental toxicity of compounds. The implementation of transcriptomics in the EST has been shown to reduce the culture duration and improve endpoint evaluation and is expected to result in an enhanced predictability and definition of the applicability domain. We evaluated the identification of developmental toxicity in the EST using two gene sets (''Van_Dartel_heartdiff_24h'' and ''EST biomarker genes'') defined in our earlier studies. Nonexposed embryonic stem cells (ESC) differentiation cultures were sampled 0, 24, and 48 h after initiation of differentiation. Additionally, cultures exposed to 12 diverse well-characterized positive and negative developmental toxicants were isolated 24 h after the onset of exposure. Inhibition of ESC differentiation was evaluated in parallel by morphological scoring on culture day 10. Transcriptomics analysis was conducted using the Affymetrix Gene Chips platform. We applied principal component analysis on the basis of the two predefined gene sets to define the ''differentiation track'' that represents ESC differentiation. The significance of derivations in the gene expression-based differentiation track because of compound exposures were evaluated to determine developmental toxicity of tested compounds. We successfully predicted developmental toxicity using transcriptomics for 83% (10/12) and 67% (8/12) of the compounds, respectively, using the two predefined gene sets (''Van_Dartel_heartdiff_24h'' and ''EST biomarker genes''). Our study suggests that the application of transcriptomics may improve the applicability of the EST for the prediction of the developmental toxicity of chemicals.
Mutagenesis, 2011
The conventional in vitro assays for genotoxicity assessment of chemicals are characterised by a ... more The conventional in vitro assays for genotoxicity assessment of chemicals are characterised by a high false-positive rate, thus failing to correctly predict their in vivo genotoxic effects. This study aimed to identify the cellular mechanisms induced by the false-positive genotoxins quercetin, 8-Hydroxyquinoline and 17-beta oestradiol in comparison to true genotoxins and non-genotoxins, by combining in vitro phenotypic parameters with transcriptomics data from HepG2 cells. The effects of these compounds on the phosphorylation of H2AX, cell cycle distribution and whole genome gene expression following treatment for 12, 24 and 48 h were compared with the effects of true genotoxins [benzo[a]pyrene and aflatoxin B1] and non-genotoxins (2,3,7,8-tetrachlorodibenzodioxin, cyclosporin A and ampicillin C). Quercetin induced similar phenotypic effects as true genotoxins and to some extent similar gene expression alterations. Different gene expression changes were also observed, including the up-regulation of DNA repair-related genes. 8-Hydroxyquinoline and 17-beta oestradiol showed no similarities to the true genotoxins at both the phenotypic and the transcriptomic level. In a classification approach, classifiers were selected to discriminate between genotoxins and non-genotoxins. Subsequent analysis for the false-positive compounds showed quercetin to be predicted as genotoxic and 8-hydroxyquinoline and 17-beta oestradiol as non-genotoxic. Our results support that transcriptomics analysis of compound effects in HepG2 leads to similar results with phenotypic analysis and provides additional mechanistic information. Therefore, combined evaluation of gene expression alterations and relevant functional end points using HepG2 cells may contribute to the better understanding of modes-of-action of chemicals and the correct evaluation of their genotoxic properties.
Mutagenesis, 2013
The toxic mechanisms of cisplatin have been frequently studied in many species and in vitro cell ... more The toxic mechanisms of cisplatin have been frequently studied in many species and in vitro cell models. The Netherlands Toxicogenomics Centre focuses on developing in vitro alternatives using genomics technologies for animal-based assays on, e.g. genotoxic hazards. Models such as human hepatocellular carcinoma cell line (HepG2) cells, mouse primary hepatocytes (PMH) and mouse embryonic stem cells (mESC) are used. Our aim was to identify possibly robust conserved mechanisms between these models using cisplatin as model genotoxic agent. Transcriptomic data newly generated from HepG2 cells and PMH exposed to 7 µM cisplatin for 12, 24 and 48 h and 24 and 48 h, respectively, were compared with published data from mESC exposed to 5 µM cisplatin for 2-24 h. Due to differences in response time between models and marginal changes after shorter exposure periods, we focused on 24 and 48 h. At gene level, 44 conserved differentially expressed genes (DEG), involved in processes such as apoptosis, cell cycle, DNA damage response and DNA repair, were found. Functional analysis shows that limited numbers of pathways are conserved. Transcription factor (TF) network analysis indicates 12 common TF networks responding among all models and time points. Four TF, HNF4-α, SP1, c-MYC and p53, capable of regulating ±50% of all DEG, seem of equal importance in all models and exposure periods. Here we showed that transcriptomic responses across several in vitro cell models following exposure to cisplatin are mainly determined by a conserved complex network of 4 TFs. These conserved responses are hypothesised to provide most relevant information for human toxicity prediction and may form the basis for new in vitro alternatives of risk assessment.
Carcinogenesis, 2012
The lack of accurate in vitro assays for predicting in vivo toxicity of chemicals together with n... more The lack of accurate in vitro assays for predicting in vivo toxicity of chemicals together with new legislations demanding replacement and reduction of animal testing has triggered the development of alternative methods. This study aimed at developing a transcriptomics-based in vitro prediction assay for in vivo genotoxicity. Transcriptomics changes induced in the human liver cell line HepG2 by 34 compounds after treatment for 12, 24, and 48 h were used for the selection of gene-sets that are capable of discriminating between in vivo genotoxins (GTX) and in vivo nongenotoxins (NGTX). By combining transcriptomics with publicly available results for these chemicals from standard in vitro genotoxicity studies, we developed several prediction models. These models were validated by using an additional set of 28 chemicals. The best prediction was achieved after stratification of chemicals according to results from the Ames bacterial gene mutation assay prior to transcriptomics evaluation after 24 h of treatment. A total of 33 genes were selected for discriminating GTX from NGTX for Ames-positive chemicals and 22 for Ames-negative chemicals. Overall, this method resulted in 89% accuracy and 91% specificity, thereby clearly outperforming the standard in vitro test battery. Transcription factor network analysis revealed HNF3a, HNF4a, HNF6, androgen receptor, and SP1 as main factors regulating the expression of classifiers for Ames-positive chemicals. Thus, the classical bacterial gene mutation assay in combination with in vitro transcriptomics in HepG2 is proposed as an upgraded in vitro approach for predicting in vivo genotoxicity of chemicals holding a great promise for reducing animal experimentations on genotoxicity.
Archives of Toxicology, 2011
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the m... more The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, nongovernmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In
Archives of Toxicology, 2012
The concept of mechanistic toxicogenomics implies that compound-induced changes in gene expressio... more The concept of mechanistic toxicogenomics implies that compound-induced changes in gene expression profiles provide valuable information about their mode of action. A growing number of research groups have presented evidence that whole-genome gene expression profiling techniques might be used as tools for in vivo and in vitro generation of gene signatures and elucidation of molecular mechanisms after exposure to toxic compounds. An important issue to be investigated is the in vivo relevance of in vitro-obtained data. In the current study, we compare the gene expression profiles generated in vitro, after exposing conventional and epigenetically stabilized primary rat hepatocytes to well-known genotoxic hepatocarcinogens (aflatoxin B1, 4-(methylnitrosamino)-1-(3pyridyl)-1-butanone and 2-nitrofluorene) with those derived in vivo after oral exposure of rats to these compounds. Similar statistical tools were applied on both sets of data. The major molecular pathways affected in the in vivo setting were DNA damage, detoxification and cell survival response, as previously described. In the conventional hepatocyte cultures, two of the three genotoxicants showed quite similar responses as in vivo with respect to these pathways. The third compound (2-nitrofluorene) revealed in vitro response which was not observed in vivo. In the epigenetically stabilized hepatocytes, in contrast to what was expected, the responses were less relevant for the in vivo situation. This study highlights the importance of in vitro/in vivo comparison of data that are generated using in vitro models and shows that conventional primary rat hepatocyte cultures represent an appropriate in vitro model to retrieve mechanistic information on the exposure to genotoxicants. Keywords Genotoxic carcinogens Á Global gene expression profiling Á In vitro/in vivo relevance Abbreviations 2NF 2-Nitrofluorene NNK 4-(Methylnitrosamino)-1-(3-pyridyl)-1butanone MTT test 3-(4,5-Dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide test AFB1 Aflatoxin B1 Cdna Complementary DNA HepsC Conventional primary rat hepatocyte cultures CO Corn oil CYP Cytochrome P450 DMSO Dimethylsulfoxide EU European Union WhoLi In vivo whole liver IC Inhibitory concentration MC Methylcellulose Nfr N-fold regulation PBS Phosphate-buffered saline Electronic supplementary material The online version of this article (
Archives of Toxicology, 2012
At present, substantial efforts are focused on the development of in vitro assays coupled with ''... more At present, substantial efforts are focused on the development of in vitro assays coupled with ''omics'' technologies for the identification of carcinogenic substances as an alternative to the classical 2-year rodent carcinogenicity bioassay. A prerequisite for the eventual regulatory acceptance of such assays, however, is the in vivo relevance of the observed in vitro findings. In the current study, hepatocarcinogen-induced gene expression profiles generated after the exposure of conventional cultures of primary rat hepatocytes to three non-genotoxic carcinogens (methapyrilene hydrochloride, piperonyl butoxide, and Wy-14643), three genotoxic carcinogens (aflatoxin B1, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-nitrofluorene), and two non-carcinogens (nifedipine and clonidine) are compared with previously obtained in vivo data after oral administration for up to 14 days of the same hepatocarcinogens to rats. In addition to the comparison of deregulated genes and functions per compound between in vivo and in vitro models, the major discriminating cellular pathways found in vivo in livers of exposed rats were examined for deregulation in vitro. Further, in vivo-derived gene signatures for the identification of genotoxic versus non-genotoxic carcinogens are used to classify in vitro-tested hepatocarcinogens and noncarcinogens. In the primary hepatocyte cultures, two out of the three tested genotoxic carcinogens mimicked the in vivo-relevant DNA damage response and were correctly assessed. Exposure to the non-genotoxic hepatocarcinogens, however, triggered a relatively weak response in the in vitro system, with no clear similarities to in vivo. This study contributes to the further optimization of toxicogenomics predictive tools when applied in in vitro settings. Keywords Non-genotoxic carcinogens Á Genotoxic carcinogens Á Global gene expression profiling Á In vitro/in vivo relevance Abbreviations 2NF 2-Nitrofluorene AFB1 Aflatoxin B1 Affin Affinity Apex Apurinic/apyrimidinic endonuclease 1 Assign Assignment Ccnb1 Cell cycle cyclin B1 Cdk1 Cycline-dependent kinase 1 cDNA Complementary DNA CND Clonidine CO Corn oil DMSO Dimethylsulfoxide FN False negative FP False positive GTX Genotoxic HepsC Conventional primary rat hepatocyte cultures IC Inhibitory concentration MC Methylcellulose Electronic supplementary material The online version of this article (
Toxicological Sciences, 2012
Chemical Research in Toxicology, 2015
Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study t... more Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study the effects of human exposure to, e.g., chemical carcinogens at the whole genome level, thus yielding broad-ranging molecular information on possible carcinogenic effects. Since genes do not operate individually but rather through concerted interactions, analyzing and visualizing networks of genes should provide important mechanistic information, especially upon connecting them to functional parameters, such as those derived from measurements of biomarkers for exposure and carcinogenic risk. Conventional methods such as hierarchical clustering and correlation analyses are frequently used to address these complex interactions but are limited as they do not provide directional causal dependence relationships. Therefore, our aim was to apply Bayesian network inference with the purpose of phenotypic anchoring of modified gene expressions. We investigated a use case on transcriptomic responses to cigarette smoking in humans, in association with plasma cotinine levels as biomarkers of exposure and aromatic DNA-adducts in blood cells as biomarkers of carcinogenic risk. Many of the genes that appear in the Bayesian networks surrounding plasma cotinine, and to a lesser extent around aromatic DNA-adducts, hold biologically relevant functions in inducing severe adverse effects of smoking. In conclusion, this study shows that Bayesian network inference enables unbiased phenotypic anchoring of transcriptomics responses. Furthermore, in all inferred Bayesian networks several dependencies are found which point to known but also to new relationships between the expression of specific genes, cigarette smoke exposure, DNA damaging-effects, and smoking-related diseases, in particular associated with apoptosis, DNA repair, and tumor suppression, as well as with autoimmunity.