José de Celis - Academia.edu (original) (raw)
Papers by José de Celis
PubMed, 1998
Morphogenesis is the process by which structures with characteristic sizes, proportions and patte... more Morphogenesis is the process by which structures with characteristic sizes, proportions and patterns of cell differentiation are generated during the development of multicellular organisms. How the elaboration of pattern is related to cell proliferation and growth control is a critical aspect of morphogenesis. The imaginal discs of Drosophila are a suitable model in which this can be investigated at cellular and molecular level, and recent genetic and developmental analysis has identified some of the key genes and mechanisms that participate in the regulation of their growth and patterning. This review will focus on the formation of the venation pattern in the adult wing, particularly on: 1) the subdivision of the wing blade into domains of gene expression that position the veins, and 2) the cell-cell signaling pathways that participate in the final differentiation of veins.
Mechanisms of Development, Oct 1, 1995
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido ... more El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
Genetics, Nov 1, 2006
The formation of the Drosophila wing involves developmental processes such as cell proliferation,... more The formation of the Drosophila wing involves developmental processes such as cell proliferation, pattern formation, and cell differentiation that are common to all multicellular organisms. The genes controlling these cellular behaviors are conserved throughout the animal kingdom, and the genetic analysis of wing development has been instrumental in their identification and functional characterization. The wing is a postembryonic structure, and most loss-of-function mutations are lethal in homozygous flies before metamorphosis. In this manner, loss-of-function genetic screens aiming to identify genes affecting wing formation have not been systematically utilized. As an alternative, a number of genetic searches have utilized the phenotypic consequences of gene gain-of-expression, as a method more efficient to search for genes required during imaginal development. Here we present the results of a gain-offunction screen designed to identify genes involved in the formation of the wing veins. We generated 13,000 P-GS insertions of a P element containing UAS sequences (P-GS) and combined them with a Gal4 driver expressed mainly in the developing pupal veins. We selected 500 P-GSs that, in combination with the Gal4 driver, result in modifications of the veins, changes in the morphology of the wing, or defects in the differentiation of the trichomes. The P-element insertion sites were mapped to the genomic sequence, identifying 373 gene candidates to participate in wing morphogenesis and vein formation.
Mechanisms of Development, May 1, 2006
The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many devel... more The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failures in rhabdomere differentiation in the eye and alterations of epithelial integrity in the wing imaginal disc. Some aspects of Drosophila Moe are related to the activity of the small GTPase RhoA, because the reduction of RhoA activity corrects many phenotypes of moe mutant embryos and imaginal discs. We have analysed the phenotype of moesin loss-offunction alleles in the wing disc and adult wing, and studied the effects of reduced Moesin activity on signalling mediated by the Notch, Decapentaplegic, Wingless and Hedgehog pathways. We found that reductions in Moesin levels in the wing disc cause the formation of wing-tissue vesicles and large thickenings of the vein L3, corresponding to breakdowns of epithelial continuity in the wing base and modifications of Hedgehog signalling in the wing blade, respectively. We did not observe any effect on signalling pathways other than Hedgehog, indicating that the moe defects in epithelial integrity have not generalised effects on cell signalling. The effects of moe mutants on Hedgehog signalling depend on the correct gene-dose of rhoA, suggesting that the requirements for Moesin in disc morphogenesis and Hh signalling in the wing disc are mediated by its regulation of RhoA activity. The mechanism linking Moesin activity with RhoA function and Hedgehog signalling remains to be elucidated.
The International Journal of Developmental Biology, 2009
The genes of the spalt (sal) family play fundamental roles during animal development. The two mem... more The genes of the spalt (sal) family play fundamental roles during animal development. The two members of this family in Drosophila, spalt (sal) and spalt-related (salr) encode Znfinger transcription factors that link the Decapentaplegic (Dpp)/BMP signalling pathway to the patterning of the wing. They are regulated by the Dpp pathway in the wing disc, and they were shown to mediate some of the morphogenetic activities of the Dpp/BMP4 secreted ligand. The sal genes were initially found by virtue of mutations that produce homeotic transformations in the head and tail of the Drosophila embryo. Since then, a number of other requirements have been associated to these genes in Drosophila, including morphogenesis of the respiratory system, cell fate specification of sensory organs and the differentiation of several photoreceptor cells, among others. Vertebrate sal orthologues (spalt-like/sall) have also important developmental roles during neural development and organogenesis, and at least two human sall genes are linked to the genetic diseases Townes Brocks Syndrome (TBS; SALL1) and Okihiro Syndrome (OS; SALL4). In this review, we will summarize the main characteristics of the sall genes and proteins, pointing out to the similarities in their developmental roles during Drosophila and vertebrate development.
Nature, May 1, 1996
Localized expression of the transforming growth factor-beta (TGF-beta) homologue decapentaplegic ... more Localized expression of the transforming growth factor-beta (TGF-beta) homologue decapentaplegic (dpp) is crucial for Drosophila wing development. Here we show that spalt and spalt-related (sal and salr), two closely related genes that encode transcription factors, are expressed in response to dpp in a central territory of the wing imaginal disc, where they are required for the patterning of the wing. They are among the first identified elements that act downstream of dpp in wing development. The phenotypic consequences of misexpression of sal and salr suggest that an important outcome of dpp activity is the subdivision of the wing disc into territories smaller than lineage compartments, through the regulation of transcription-factor-encoding genes such as sal and salr.
PLOS Genetics, 2021
Activation of Ras signaling occurs in ~30% of human cancers. However, activated Ras alone is insu... more Activation of Ras signaling occurs in ~30% of human cancers. However, activated Ras alone is insufficient to produce malignancy. Thus, it is imperative to identify those genes cooperating with activated Ras in driving tumoral growth. In this work, we have identified a novel EGFR inhibitor, which we have named EGFRAP, for EGFR adaptor protein. Elimination of EGFRAP potentiates activated Ras-induced overgrowth in the Drosophila wing imaginal disc. We show that EGFRAP interacts physically with the phosphorylated form of EGFR via its SH2 domain. EGFRAP is expressed at high levels in regions of maximal EGFR/Ras pathway activity, such as at the presumptive wing margin. In addition, EGFRAP expression is up-regulated in conditions of oncogenic EGFR/Ras activation. Normal and oncogenic EGFR/Ras-mediated upregulation of EGRAP levels depend on the Notch pathway. We also find that elimination of EGFRAP does not affect overall organogenesis or viability. However, simultaneous downregulation of E...
G3 Genes|Genomes|Genetics, 2021
We have screened a collection of UAS-RNAi lines targeting 10,920 Drosophila protein-coding genes ... more We have screened a collection of UAS-RNAi lines targeting 10,920 Drosophila protein-coding genes for phenotypes in the adult wing. We identified 3653 genes (33%) whose knockdown causes either larval/pupal lethality or a mutant phenotype affecting the formation of a normal wing. The most frequent phenotypes consist of changes in wing size, vein differentiation, and patterning, defects in the wing margin and in the apposition of the dorsal and ventral wing surfaces. We also defined 16 functional categories encompassing the most relevant aspect of each protein function and assigned each Drosophila gene to one of these functional groups. This allowed us to identify which mutant phenotypes are enriched within each functional group. Finally, we used previously published gene expression datasets to determine which genes are or are not expressed in the wing disc. Integrating expression, phenotypic and molecular information offers considerable precision to identify the relevant genes affecti...
Development, 1997
Notch function is required at the dorsoventral boundary of the developing Drosophila wing for its... more Notch function is required at the dorsoventral boundary of the developing Drosophila wing for its normal growth and patterning. We find that clones of cells expressing either Notch or its ligands Delta and Serrate in the wing mimic Notch activation at the dorsoventral boundary producing non-autonomous effects on proliferation, and activating expression of the target genes E(spl), wingless and cut. The analysis of these clones reveals several mechanisms important for maintaining and delimiting Notch function at the dorsoventral boundary. First, Notch activation in the wing leads to increased production of Delta and Serrate generating a positive feedback loop that maintains signalling. We propose that during normal development, wingless co-operates with Notch to reinforce this positive feedback and Cut, which is activated by Notch at late stages, acts antagonistically to prevent Delta and Serrate expression. Second, high levels of Delta and Serrate have a dominant negative effect on N...
Developmental Biology, 2020
Ras1 (Ras85D) and Ras2 (Ras64B) are the Drosophila orthologs of human H-Ras/N-Ras/K-Ras and R-Ras... more Ras1 (Ras85D) and Ras2 (Ras64B) are the Drosophila orthologs of human H-Ras/N-Ras/K-Ras and R-Ras1-3 genes, respectively. The function of Ras1 has been thoroughly characterised during Drosophila embryonic and imaginal development, and it is associated with coupling activated trans-membrane receptors with tyrosine kinase activity to their downstream effectors. In this capacity, Ras1 binds and is required for the activation of Raf. Ras1 can also interact with PI3K, and it is needed to achieve maximal levels of PI3K signalling in specific cellular settings. In contrast, the function of the unique Drosophila R-Ras member (Ras2/Ras64B), which is more closely related to vertebrate R-Ras2/TC21, has been only studied through the use of constitutively activated forms of the protein. This pioneering work identified a variety of phenotypes that were related to those displayed by Ras1, suggesting that Ras1 and Ras2 might have overlapping activities. Here we find that Ras2 can interact with PI3K and Raf and activate their downstream effectors Akt and Erk. However, and in contrast to mutants in Ras1, which are lethal, null alleles of Ras2 are viable in homozygosis and only show a phenotype of reduced wing size and extended life span that might be related to reduced Insulin receptor signalling.
Nature, 1998
In the Drosophila compound eye the dorsal and ventral fields of eye units (ommatidia) meet along ... more In the Drosophila compound eye the dorsal and ventral fields of eye units (ommatidia) meet along the dorsoventral midline, forming a line of mirror image symmetry called the equator. The molecular mechanism establishing the equator is not fully understood, but it involves the transcription factors encoded by the Iroquois gene complex. The Iroquois genes are expressed in the dorsal half of the eye and here we show that they regulate the expression of the secreted molecule Fringe. A boundary between fringe-expressing and fringe-non-expressing cells is essential, from the time of the second larval instar, for eye growth and formation of the equator. Boundaries of fringe expression determine where the transmembrane receptor Notch is activated. We find that Notch is activated at the dorsoventral midline, where it is required to promote growth and set up the axis of mirror symmetry. As boundaries of fringe expression and Notch activation are also important during Drosophila wing formation and vertebrate somitogenesis, we suggest that these boundaries constitute a general mechanism that directs growth and patterning of large fields of cells.
Transcription, Jan 6, 2016
The core of gene regulatory networks (GRNs) is formed by transcription factors (TF) and cis-regul... more The core of gene regulatory networks (GRNs) is formed by transcription factors (TF) and cis-regulatory modules (CRMs) present in their downstream genes. GRNs have a modular structure in which complex circuitries link TFs to CRMs to generate specific transcriptional outputs. (1) Of particular interest are those GRNs including cell fate-determining genes, as they constitute developmental switches which activity is necessary and sufficient to promote particular cellular fates. Most of the genetic analysis of developmental processes deals with the composition and structure of GRNs acting upstream of cell fate-determining genes, as they are best suited for genetic analysis and molecular deconstruction. More recently, the application of a variety of in vivo, computational and genome-wide approaches is allowing the identification and functional analysis of GRNs acting downstream of cell fate-determining genes. In this review we discuss several examples of GRNs acting upstream and downstrea...
Human Genetic Diseases, 2011
Signalling pathways are molecular modules used to convey information among cells. Each pathway is... more Signalling pathways are molecular modules used to convey information among cells. Each pathway is formed by several components connected by molecular recognition and organised in a hierarchical manner, starting with a ligand and ending with a transcription factor. The temporal and spatial expression of the ligands determines the domain of activation of each signalling pathway. The expression of ligands is subject to transcriptional regulation defined by the combination of transcription factors present in the ligandproducing cell (see for example
Biology Open, 2012
Summary The expression of the spalt genes is regulated by the Decapentaplegic signalling pathway ... more Summary The expression of the spalt genes is regulated by the Decapentaplegic signalling pathway in the Drosophila wing. These genes participate in the patterning of the longitudinal wing veins by regulating the expression of vein-specific genes, and in the establishment of cellular affinities in the central region of the wing blade epithelium. The Spalt proteins act as transcription factors, most likely regulating gene expression by repression, but the identity of their target genes in the wing is still unknown. As a preliminary step to unravel the genetic hierarchy controlled by the Spalt proteins, we have analysed their requirements during wing development, and addressed to what extent they mediate all the functions of the Decapentaplegic pathway in this developmental system. We identify additional functions for Spalt in cell division, survival, and maintenance of epithelial integrity. Thus, Spalt activity is required to promote cell proliferation, acting in the G2/M transition o...
Proceedings of the National Academy of Sciences, 2007
Signaling by Smoothened (Smo) plays fundamental roles during animal development and is deregulate... more Signaling by Smoothened (Smo) plays fundamental roles during animal development and is deregulated in a variety of human cancers. Smo is a transmembrane protein with a heptahelical topology characteristic of G protein-coupled receptors. Despite such similarity, the mechanisms regulating Smo signaling are not fully understood. We show that Gprk2, a Drosophila member of the G protein-coupled receptor kinases, plays a key role in the Smo signal transduction pathway. Lowering Gprk2 levels in the wing disc reduces the expression of Smo targets and causes a phenotype reminiscent of loss of Smo function. We found that Gprk2 function is required for transducing the Smo signal and that when Gprk2 levels are lowered, Smo still accumulates at the cell membrane, but its activation is reduced. Interestingly, the expression of Gprk2 in the wing disc is regulated in part by Smo, generating a positive feedback loop that maintains high Smo activity close to the anterior–posterior compartment boundary.
PLoS ONE, 2011
Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several ... more Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. Methodology and Principal Findings: Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1) or are exposed to irradiation (JNK). We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. Conclusions and Significance: We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability.
Genetics, 2010
The development of the Drosophila melanogaster wing depends on the correct regulation of cell sur... more The development of the Drosophila melanogaster wing depends on the correct regulation of cell survival, growth, proliferation, differentiation, and pattern formation. These processes, and the genes controlling then, are common to the development of epithelia in many different organisms. To identify additional genes contributing to wing development we have carried out a genetic screen in mosaic wings carrying clones of homozygous mutant cells. We obtained 12 complementation groups corresponding to genes with a proven role in wing formation such as smoothened, thick veins, mothers against dpp, expanded, and fat and 71 new complementation groups affecting the pattern of veins and the size of wing. We mapped one of these groups to the mediator15 gene (med15), a component of the Mediator complex. We show that Med15 and other members of the Mediator complex are required, among other processes, for the transcription of decapentaplegic target genes.
Genes & Development, 1991
The proneural genes achaete (ac) and scute (sc) confer to Drosophila epidermal cells the ability ... more The proneural genes achaete (ac) and scute (sc) confer to Drosophila epidermal cells the ability to become sensory mother cells (SMCs). In imaginal discs, ac-sc are expressed in groups of cells, the proneural clusters, which are thought to delimit the areas where SMCs arise. We have visualized with the resolution of single cells the initial stages of sensory organ development by following the evolving pattern of proneural clusters and the emergence of SMCs. At reproducible positions within clusters, a small number of cells accumulate increased amounts of ac-sc protein. Subsequently, one of these cells, the SMC, accumulates the highest amount. Later, at least some SMCs become surrounded by cells with reduced ac-sc expression, a phenomenon probably related to lateral inhibition. Genetic mosaic analyses of cells with different doses of ac-sc genes, the sc expression in sc mutants, and the above findings show that the levels of ac-sc products are most important for SMC singling-out and ...
Developmental Dynamics, 2005
The formation of longitudinal veins in the Drosophila wing involves cell interactions mediated by... more The formation of longitudinal veins in the Drosophila wing involves cell interactions mediated by the conserved signaling pathways Decapentaplegic (Dpp), Notch, and epidermal growth factor receptor (EGFR). Interactions between Notch and EGFR taking place in the wing disc divide each vein into a central domain, where EGFR is active, and two boundary domains where Notch is active. The expression of decapentaplegic (dpp) is activated in the veins during pupal development, and we have generated Gal4 drivers using the regulatory region that drives dpp expression at this stage. By using these drivers, we studied the relationships between the Notch, EGFR, and Dpp signaling pathways that occur during pupal development. Our results indicate that the interactions between EGFR and Notch initiated in the imaginal disc are maintained throughout pupal development and contribute to determine the places where dpp is expressed. Once dpp expression is initiated, Dpp and EGFR activities in the provein maintain each other and, in cooperation, determine vein cell differentiation.
PubMed, 1998
Morphogenesis is the process by which structures with characteristic sizes, proportions and patte... more Morphogenesis is the process by which structures with characteristic sizes, proportions and patterns of cell differentiation are generated during the development of multicellular organisms. How the elaboration of pattern is related to cell proliferation and growth control is a critical aspect of morphogenesis. The imaginal discs of Drosophila are a suitable model in which this can be investigated at cellular and molecular level, and recent genetic and developmental analysis has identified some of the key genes and mechanisms that participate in the regulation of their growth and patterning. This review will focus on the formation of the venation pattern in the adult wing, particularly on: 1) the subdivision of the wing blade into domains of gene expression that position the veins, and 2) the cell-cell signaling pathways that participate in the final differentiation of veins.
Mechanisms of Development, Oct 1, 1995
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido ... more El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
Genetics, Nov 1, 2006
The formation of the Drosophila wing involves developmental processes such as cell proliferation,... more The formation of the Drosophila wing involves developmental processes such as cell proliferation, pattern formation, and cell differentiation that are common to all multicellular organisms. The genes controlling these cellular behaviors are conserved throughout the animal kingdom, and the genetic analysis of wing development has been instrumental in their identification and functional characterization. The wing is a postembryonic structure, and most loss-of-function mutations are lethal in homozygous flies before metamorphosis. In this manner, loss-of-function genetic screens aiming to identify genes affecting wing formation have not been systematically utilized. As an alternative, a number of genetic searches have utilized the phenotypic consequences of gene gain-of-expression, as a method more efficient to search for genes required during imaginal development. Here we present the results of a gain-offunction screen designed to identify genes involved in the formation of the wing veins. We generated 13,000 P-GS insertions of a P element containing UAS sequences (P-GS) and combined them with a Gal4 driver expressed mainly in the developing pupal veins. We selected 500 P-GSs that, in combination with the Gal4 driver, result in modifications of the veins, changes in the morphology of the wing, or defects in the differentiation of the trichomes. The P-element insertion sites were mapped to the genomic sequence, identifying 373 gene candidates to participate in wing morphogenesis and vein formation.
Mechanisms of Development, May 1, 2006
The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many devel... more The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failures in rhabdomere differentiation in the eye and alterations of epithelial integrity in the wing imaginal disc. Some aspects of Drosophila Moe are related to the activity of the small GTPase RhoA, because the reduction of RhoA activity corrects many phenotypes of moe mutant embryos and imaginal discs. We have analysed the phenotype of moesin loss-offunction alleles in the wing disc and adult wing, and studied the effects of reduced Moesin activity on signalling mediated by the Notch, Decapentaplegic, Wingless and Hedgehog pathways. We found that reductions in Moesin levels in the wing disc cause the formation of wing-tissue vesicles and large thickenings of the vein L3, corresponding to breakdowns of epithelial continuity in the wing base and modifications of Hedgehog signalling in the wing blade, respectively. We did not observe any effect on signalling pathways other than Hedgehog, indicating that the moe defects in epithelial integrity have not generalised effects on cell signalling. The effects of moe mutants on Hedgehog signalling depend on the correct gene-dose of rhoA, suggesting that the requirements for Moesin in disc morphogenesis and Hh signalling in the wing disc are mediated by its regulation of RhoA activity. The mechanism linking Moesin activity with RhoA function and Hedgehog signalling remains to be elucidated.
The International Journal of Developmental Biology, 2009
The genes of the spalt (sal) family play fundamental roles during animal development. The two mem... more The genes of the spalt (sal) family play fundamental roles during animal development. The two members of this family in Drosophila, spalt (sal) and spalt-related (salr) encode Znfinger transcription factors that link the Decapentaplegic (Dpp)/BMP signalling pathway to the patterning of the wing. They are regulated by the Dpp pathway in the wing disc, and they were shown to mediate some of the morphogenetic activities of the Dpp/BMP4 secreted ligand. The sal genes were initially found by virtue of mutations that produce homeotic transformations in the head and tail of the Drosophila embryo. Since then, a number of other requirements have been associated to these genes in Drosophila, including morphogenesis of the respiratory system, cell fate specification of sensory organs and the differentiation of several photoreceptor cells, among others. Vertebrate sal orthologues (spalt-like/sall) have also important developmental roles during neural development and organogenesis, and at least two human sall genes are linked to the genetic diseases Townes Brocks Syndrome (TBS; SALL1) and Okihiro Syndrome (OS; SALL4). In this review, we will summarize the main characteristics of the sall genes and proteins, pointing out to the similarities in their developmental roles during Drosophila and vertebrate development.
Nature, May 1, 1996
Localized expression of the transforming growth factor-beta (TGF-beta) homologue decapentaplegic ... more Localized expression of the transforming growth factor-beta (TGF-beta) homologue decapentaplegic (dpp) is crucial for Drosophila wing development. Here we show that spalt and spalt-related (sal and salr), two closely related genes that encode transcription factors, are expressed in response to dpp in a central territory of the wing imaginal disc, where they are required for the patterning of the wing. They are among the first identified elements that act downstream of dpp in wing development. The phenotypic consequences of misexpression of sal and salr suggest that an important outcome of dpp activity is the subdivision of the wing disc into territories smaller than lineage compartments, through the regulation of transcription-factor-encoding genes such as sal and salr.
PLOS Genetics, 2021
Activation of Ras signaling occurs in ~30% of human cancers. However, activated Ras alone is insu... more Activation of Ras signaling occurs in ~30% of human cancers. However, activated Ras alone is insufficient to produce malignancy. Thus, it is imperative to identify those genes cooperating with activated Ras in driving tumoral growth. In this work, we have identified a novel EGFR inhibitor, which we have named EGFRAP, for EGFR adaptor protein. Elimination of EGFRAP potentiates activated Ras-induced overgrowth in the Drosophila wing imaginal disc. We show that EGFRAP interacts physically with the phosphorylated form of EGFR via its SH2 domain. EGFRAP is expressed at high levels in regions of maximal EGFR/Ras pathway activity, such as at the presumptive wing margin. In addition, EGFRAP expression is up-regulated in conditions of oncogenic EGFR/Ras activation. Normal and oncogenic EGFR/Ras-mediated upregulation of EGRAP levels depend on the Notch pathway. We also find that elimination of EGFRAP does not affect overall organogenesis or viability. However, simultaneous downregulation of E...
G3 Genes|Genomes|Genetics, 2021
We have screened a collection of UAS-RNAi lines targeting 10,920 Drosophila protein-coding genes ... more We have screened a collection of UAS-RNAi lines targeting 10,920 Drosophila protein-coding genes for phenotypes in the adult wing. We identified 3653 genes (33%) whose knockdown causes either larval/pupal lethality or a mutant phenotype affecting the formation of a normal wing. The most frequent phenotypes consist of changes in wing size, vein differentiation, and patterning, defects in the wing margin and in the apposition of the dorsal and ventral wing surfaces. We also defined 16 functional categories encompassing the most relevant aspect of each protein function and assigned each Drosophila gene to one of these functional groups. This allowed us to identify which mutant phenotypes are enriched within each functional group. Finally, we used previously published gene expression datasets to determine which genes are or are not expressed in the wing disc. Integrating expression, phenotypic and molecular information offers considerable precision to identify the relevant genes affecti...
Development, 1997
Notch function is required at the dorsoventral boundary of the developing Drosophila wing for its... more Notch function is required at the dorsoventral boundary of the developing Drosophila wing for its normal growth and patterning. We find that clones of cells expressing either Notch or its ligands Delta and Serrate in the wing mimic Notch activation at the dorsoventral boundary producing non-autonomous effects on proliferation, and activating expression of the target genes E(spl), wingless and cut. The analysis of these clones reveals several mechanisms important for maintaining and delimiting Notch function at the dorsoventral boundary. First, Notch activation in the wing leads to increased production of Delta and Serrate generating a positive feedback loop that maintains signalling. We propose that during normal development, wingless co-operates with Notch to reinforce this positive feedback and Cut, which is activated by Notch at late stages, acts antagonistically to prevent Delta and Serrate expression. Second, high levels of Delta and Serrate have a dominant negative effect on N...
Developmental Biology, 2020
Ras1 (Ras85D) and Ras2 (Ras64B) are the Drosophila orthologs of human H-Ras/N-Ras/K-Ras and R-Ras... more Ras1 (Ras85D) and Ras2 (Ras64B) are the Drosophila orthologs of human H-Ras/N-Ras/K-Ras and R-Ras1-3 genes, respectively. The function of Ras1 has been thoroughly characterised during Drosophila embryonic and imaginal development, and it is associated with coupling activated trans-membrane receptors with tyrosine kinase activity to their downstream effectors. In this capacity, Ras1 binds and is required for the activation of Raf. Ras1 can also interact with PI3K, and it is needed to achieve maximal levels of PI3K signalling in specific cellular settings. In contrast, the function of the unique Drosophila R-Ras member (Ras2/Ras64B), which is more closely related to vertebrate R-Ras2/TC21, has been only studied through the use of constitutively activated forms of the protein. This pioneering work identified a variety of phenotypes that were related to those displayed by Ras1, suggesting that Ras1 and Ras2 might have overlapping activities. Here we find that Ras2 can interact with PI3K and Raf and activate their downstream effectors Akt and Erk. However, and in contrast to mutants in Ras1, which are lethal, null alleles of Ras2 are viable in homozygosis and only show a phenotype of reduced wing size and extended life span that might be related to reduced Insulin receptor signalling.
Nature, 1998
In the Drosophila compound eye the dorsal and ventral fields of eye units (ommatidia) meet along ... more In the Drosophila compound eye the dorsal and ventral fields of eye units (ommatidia) meet along the dorsoventral midline, forming a line of mirror image symmetry called the equator. The molecular mechanism establishing the equator is not fully understood, but it involves the transcription factors encoded by the Iroquois gene complex. The Iroquois genes are expressed in the dorsal half of the eye and here we show that they regulate the expression of the secreted molecule Fringe. A boundary between fringe-expressing and fringe-non-expressing cells is essential, from the time of the second larval instar, for eye growth and formation of the equator. Boundaries of fringe expression determine where the transmembrane receptor Notch is activated. We find that Notch is activated at the dorsoventral midline, where it is required to promote growth and set up the axis of mirror symmetry. As boundaries of fringe expression and Notch activation are also important during Drosophila wing formation and vertebrate somitogenesis, we suggest that these boundaries constitute a general mechanism that directs growth and patterning of large fields of cells.
Transcription, Jan 6, 2016
The core of gene regulatory networks (GRNs) is formed by transcription factors (TF) and cis-regul... more The core of gene regulatory networks (GRNs) is formed by transcription factors (TF) and cis-regulatory modules (CRMs) present in their downstream genes. GRNs have a modular structure in which complex circuitries link TFs to CRMs to generate specific transcriptional outputs. (1) Of particular interest are those GRNs including cell fate-determining genes, as they constitute developmental switches which activity is necessary and sufficient to promote particular cellular fates. Most of the genetic analysis of developmental processes deals with the composition and structure of GRNs acting upstream of cell fate-determining genes, as they are best suited for genetic analysis and molecular deconstruction. More recently, the application of a variety of in vivo, computational and genome-wide approaches is allowing the identification and functional analysis of GRNs acting downstream of cell fate-determining genes. In this review we discuss several examples of GRNs acting upstream and downstrea...
Human Genetic Diseases, 2011
Signalling pathways are molecular modules used to convey information among cells. Each pathway is... more Signalling pathways are molecular modules used to convey information among cells. Each pathway is formed by several components connected by molecular recognition and organised in a hierarchical manner, starting with a ligand and ending with a transcription factor. The temporal and spatial expression of the ligands determines the domain of activation of each signalling pathway. The expression of ligands is subject to transcriptional regulation defined by the combination of transcription factors present in the ligandproducing cell (see for example
Biology Open, 2012
Summary The expression of the spalt genes is regulated by the Decapentaplegic signalling pathway ... more Summary The expression of the spalt genes is regulated by the Decapentaplegic signalling pathway in the Drosophila wing. These genes participate in the patterning of the longitudinal wing veins by regulating the expression of vein-specific genes, and in the establishment of cellular affinities in the central region of the wing blade epithelium. The Spalt proteins act as transcription factors, most likely regulating gene expression by repression, but the identity of their target genes in the wing is still unknown. As a preliminary step to unravel the genetic hierarchy controlled by the Spalt proteins, we have analysed their requirements during wing development, and addressed to what extent they mediate all the functions of the Decapentaplegic pathway in this developmental system. We identify additional functions for Spalt in cell division, survival, and maintenance of epithelial integrity. Thus, Spalt activity is required to promote cell proliferation, acting in the G2/M transition o...
Proceedings of the National Academy of Sciences, 2007
Signaling by Smoothened (Smo) plays fundamental roles during animal development and is deregulate... more Signaling by Smoothened (Smo) plays fundamental roles during animal development and is deregulated in a variety of human cancers. Smo is a transmembrane protein with a heptahelical topology characteristic of G protein-coupled receptors. Despite such similarity, the mechanisms regulating Smo signaling are not fully understood. We show that Gprk2, a Drosophila member of the G protein-coupled receptor kinases, plays a key role in the Smo signal transduction pathway. Lowering Gprk2 levels in the wing disc reduces the expression of Smo targets and causes a phenotype reminiscent of loss of Smo function. We found that Gprk2 function is required for transducing the Smo signal and that when Gprk2 levels are lowered, Smo still accumulates at the cell membrane, but its activation is reduced. Interestingly, the expression of Gprk2 in the wing disc is regulated in part by Smo, generating a positive feedback loop that maintains high Smo activity close to the anterior–posterior compartment boundary.
PLoS ONE, 2011
Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several ... more Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. Methodology and Principal Findings: Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1) or are exposed to irradiation (JNK). We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. Conclusions and Significance: We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability.
Genetics, 2010
The development of the Drosophila melanogaster wing depends on the correct regulation of cell sur... more The development of the Drosophila melanogaster wing depends on the correct regulation of cell survival, growth, proliferation, differentiation, and pattern formation. These processes, and the genes controlling then, are common to the development of epithelia in many different organisms. To identify additional genes contributing to wing development we have carried out a genetic screen in mosaic wings carrying clones of homozygous mutant cells. We obtained 12 complementation groups corresponding to genes with a proven role in wing formation such as smoothened, thick veins, mothers against dpp, expanded, and fat and 71 new complementation groups affecting the pattern of veins and the size of wing. We mapped one of these groups to the mediator15 gene (med15), a component of the Mediator complex. We show that Med15 and other members of the Mediator complex are required, among other processes, for the transcription of decapentaplegic target genes.
Genes & Development, 1991
The proneural genes achaete (ac) and scute (sc) confer to Drosophila epidermal cells the ability ... more The proneural genes achaete (ac) and scute (sc) confer to Drosophila epidermal cells the ability to become sensory mother cells (SMCs). In imaginal discs, ac-sc are expressed in groups of cells, the proneural clusters, which are thought to delimit the areas where SMCs arise. We have visualized with the resolution of single cells the initial stages of sensory organ development by following the evolving pattern of proneural clusters and the emergence of SMCs. At reproducible positions within clusters, a small number of cells accumulate increased amounts of ac-sc protein. Subsequently, one of these cells, the SMC, accumulates the highest amount. Later, at least some SMCs become surrounded by cells with reduced ac-sc expression, a phenomenon probably related to lateral inhibition. Genetic mosaic analyses of cells with different doses of ac-sc genes, the sc expression in sc mutants, and the above findings show that the levels of ac-sc products are most important for SMC singling-out and ...
Developmental Dynamics, 2005
The formation of longitudinal veins in the Drosophila wing involves cell interactions mediated by... more The formation of longitudinal veins in the Drosophila wing involves cell interactions mediated by the conserved signaling pathways Decapentaplegic (Dpp), Notch, and epidermal growth factor receptor (EGFR). Interactions between Notch and EGFR taking place in the wing disc divide each vein into a central domain, where EGFR is active, and two boundary domains where Notch is active. The expression of decapentaplegic (dpp) is activated in the veins during pupal development, and we have generated Gal4 drivers using the regulatory region that drives dpp expression at this stage. By using these drivers, we studied the relationships between the Notch, EGFR, and Dpp signaling pathways that occur during pupal development. Our results indicate that the interactions between EGFR and Notch initiated in the imaginal disc are maintained throughout pupal development and contribute to determine the places where dpp is expressed. Once dpp expression is initiated, Dpp and EGFR activities in the provein maintain each other and, in cooperation, determine vein cell differentiation.