Juan Inostroza - Academia.edu (original) (raw)
Papers by Juan Inostroza
Cell, 1992
We have discovered a protein termed Dr1 that interacts with the TATA-binding protein, TBP. The as... more We have discovered a protein termed Dr1 that interacts with the TATA-binding protein, TBP. The association of Dr1 with TBP results in repression of both basal and activated levels of transcription. The interaction of Dr1 with TBP precludes the formation of a transcription-competent complex by inhibiting the association of TFIIA and/or TFIIB with TBP. Dr1 activity is associated with a 19 kd protein. A cDNA clone encoding Dr1 was isolated. Dr1 is phosphorylated in vivo and phosphorylation of Dr1 affected its interaction with TBP. Our results suggest a regulatory role for Dr1 in repression of transcription mediated via phosphorylation.
Revista Internacional de …, Jan 1, 2007
Se obtuvieron glándulas pineales humanas de preparaciones anatómicas frescas: a) grupo 1, de 1 a ... more Se obtuvieron glándulas pineales humanas de preparaciones anatómicas frescas: a) grupo 1, de 1 a 6 años, n = 6; b) grupo 2, de 12 a 17 años, n = 3; c) grupo 3, de 20 a 30 años, n = 3, y d) grupo 4, de 35 años de edad, n = 3. Las muestras fijadas en formol (pH, 7,2) durante ...
… Science and Pollution …, Jan 1, 2011
Biological Research, Jan 1, 2005
Biological Research, Jan 1, 2003
Journal of …, Jan 1, 1990
Science, Jan 1, 1994
RNA polymerases I, II, and III each use the TATA-binding protein (TBP). Regulators that target th... more RNA polymerases I, II, and III each use the TATA-binding protein (TBP). Regulators that target this shared factor may therefore provide a means to coordinate the activities of the three nuclear RNA polymerases. The repressor Dr1 binds to TBP and blocks the interaction of TBP with polymerase II- and polymerase III-specific factors. This enables Dr1 to coordinately regulate transcription by RNA polymerases II and III. Under the same conditions, Dr1 does not inhibit polymerase I transcription. By selectively repressing polymerases II and III, Dr1 may shift the physiological balance of transcriptional output in favor of polymerase I.
Journal of Biological Chemistry, Jan 1, 1991
Proceedings of the …, Jan 1, 1994
… and cellular biology, Jan 1, 1995
This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein whi... more This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein which has been proposed to play a key role in regulating the differentiation and/or proliferation state of specific cell populations during embryogenesis. We show, using basal and activated transcription templates, that Msx-1 is a potent repressor of transcription and can function through both TATA-containing and TATA-less promoters. Moreover, repression in vivo and in vitro occurs in the absence of DNA-binding sites for the Msx-1 homeodomain. Utilizing a series of truncated Msx-1 polypeptides, we show that multiple regions of Msx-1 contribute to repression, and these are rich in alanine, glycine, and proline residues. When fused to a heterologous DNA-binding domain, both N- and C-terminal regions of Msx-1 retain repressor function, which is dependent upon the presence of the heterologous DNA-binding site. Moreover, a polypeptide consisting of the full-length Msx-1 fused to a heterologous DNA-binding domain is a more potent repressor than either the N- or C-terminal regions alone, and this fusion retains the ability to repress transcription in the absence of the heterologous DNA site. We further show that Msx-1 represses transcription in vitro in a purified reconstituted assay system and interacts with protein complexes composed of TBP and TFIIA (DA) and TBP, TFIIA, and TFIIB (DAB) in gel retardation assays, suggesting that the mechanism of repression is mediated through interaction(s) with a component(s) of the core transcription complex. We speculate that the repressor function of Msx-1 is critical for its proposed role in embryogenesis as a regulator of cellular differentiation.
Nature, Jan 1, 1997
The functionally conserved proteins CBP and p300 act in conjunction with other factors to activat... more The functionally conserved proteins CBP and p300 act in conjunction with other factors to activate transcription of DNA. A new factor, p/CIP, has been discovered that is present in the cell as a complex with CBP and is required for transcriptional activity of nuclear receptors and other CBP/p300-dependent transcription factors. The highly related nuclear-receptor co-activator protein NCoA-1 is also specifically required for ligand-dependent activation of genes by nuclear receptors. p/CIP, NCoA-1 and CBP all contain related leucine-rich charged helical interaction motifs that are required for receptor-specific mechanisms of gene activation, and allow the selective inhibition of distinct signal-transduction pathways.
Cell, 1992
We have discovered a protein termed Dr1 that interacts with the TATA-binding protein, TBP. The as... more We have discovered a protein termed Dr1 that interacts with the TATA-binding protein, TBP. The association of Dr1 with TBP results in repression of both basal and activated levels of transcription. The interaction of Dr1 with TBP precludes the formation of a transcription-competent complex by inhibiting the association of TFIIA and/or TFIIB with TBP. Dr1 activity is associated with a 19 kd protein. A cDNA clone encoding Dr1 was isolated. Dr1 is phosphorylated in vivo and phosphorylation of Dr1 affected its interaction with TBP. Our results suggest a regulatory role for Dr1 in repression of transcription mediated via phosphorylation.
Revista Internacional de …, Jan 1, 2007
Se obtuvieron glándulas pineales humanas de preparaciones anatómicas frescas: a) grupo 1, de 1 a ... more Se obtuvieron glándulas pineales humanas de preparaciones anatómicas frescas: a) grupo 1, de 1 a 6 años, n = 6; b) grupo 2, de 12 a 17 años, n = 3; c) grupo 3, de 20 a 30 años, n = 3, y d) grupo 4, de 35 años de edad, n = 3. Las muestras fijadas en formol (pH, 7,2) durante ...
… Science and Pollution …, Jan 1, 2011
Biological Research, Jan 1, 2005
Biological Research, Jan 1, 2003
Journal of …, Jan 1, 1990
Science, Jan 1, 1994
RNA polymerases I, II, and III each use the TATA-binding protein (TBP). Regulators that target th... more RNA polymerases I, II, and III each use the TATA-binding protein (TBP). Regulators that target this shared factor may therefore provide a means to coordinate the activities of the three nuclear RNA polymerases. The repressor Dr1 binds to TBP and blocks the interaction of TBP with polymerase II- and polymerase III-specific factors. This enables Dr1 to coordinately regulate transcription by RNA polymerases II and III. Under the same conditions, Dr1 does not inhibit polymerase I transcription. By selectively repressing polymerases II and III, Dr1 may shift the physiological balance of transcriptional output in favor of polymerase I.
Journal of Biological Chemistry, Jan 1, 1991
Proceedings of the …, Jan 1, 1994
… and cellular biology, Jan 1, 1995
This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein whi... more This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein which has been proposed to play a key role in regulating the differentiation and/or proliferation state of specific cell populations during embryogenesis. We show, using basal and activated transcription templates, that Msx-1 is a potent repressor of transcription and can function through both TATA-containing and TATA-less promoters. Moreover, repression in vivo and in vitro occurs in the absence of DNA-binding sites for the Msx-1 homeodomain. Utilizing a series of truncated Msx-1 polypeptides, we show that multiple regions of Msx-1 contribute to repression, and these are rich in alanine, glycine, and proline residues. When fused to a heterologous DNA-binding domain, both N- and C-terminal regions of Msx-1 retain repressor function, which is dependent upon the presence of the heterologous DNA-binding site. Moreover, a polypeptide consisting of the full-length Msx-1 fused to a heterologous DNA-binding domain is a more potent repressor than either the N- or C-terminal regions alone, and this fusion retains the ability to repress transcription in the absence of the heterologous DNA site. We further show that Msx-1 represses transcription in vitro in a purified reconstituted assay system and interacts with protein complexes composed of TBP and TFIIA (DA) and TBP, TFIIA, and TFIIB (DAB) in gel retardation assays, suggesting that the mechanism of repression is mediated through interaction(s) with a component(s) of the core transcription complex. We speculate that the repressor function of Msx-1 is critical for its proposed role in embryogenesis as a regulator of cellular differentiation.
Nature, Jan 1, 1997
The functionally conserved proteins CBP and p300 act in conjunction with other factors to activat... more The functionally conserved proteins CBP and p300 act in conjunction with other factors to activate transcription of DNA. A new factor, p/CIP, has been discovered that is present in the cell as a complex with CBP and is required for transcriptional activity of nuclear receptors and other CBP/p300-dependent transcription factors. The highly related nuclear-receptor co-activator protein NCoA-1 is also specifically required for ligand-dependent activation of genes by nuclear receptors. p/CIP, NCoA-1 and CBP all contain related leucine-rich charged helical interaction motifs that are required for receptor-specific mechanisms of gene activation, and allow the selective inhibition of distinct signal-transduction pathways.