Jyotendra Kunwar - Academia.edu (original) (raw)
Papers by Jyotendra Kunwar
Nanomaterials
Zinc–air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-i... more Zinc–air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-ion batteries (LIBs), primarily due to their impressive energy density and low cost. However, the efficacy of zinc–air batteries is heavily dependent on electrocatalysts, which play a vital role in enhancing reaction efficiency and stability. This scholarly review article highlights the crucial significance of electrocatalysts in zinc–air batteries and explores the rationale behind employing Fe-Co-Ni-Zn-based metal–organic framework (MOF)-derived hybrid materials as potential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy, high catalytic activity, tunability, and structural stability. Various synthesis methods and characterization techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable for applications in ZABs. Fu...
International Journal of Energy Research
Recently, Zeolitic Imidazolate Frameworks (ZIFs) and their hybrid composites have incited a lot o... more Recently, Zeolitic Imidazolate Frameworks (ZIFs) and their hybrid composites have incited a lot of interest in the research community and have shown promising potential in supercapacitors owing to their excellent conductivity, high surface area, tunable structure, rich redox chemistry, composition diversity, etc. Even though many ZIFs are being studied for the advancement of electrode materials used for energy storage applications, in this review, we are focused on ZIF-8 and ZIF-67 only. The electrochemical performance of pure ZIFs is poor due to low electronic conductivity and poor cycling life. To counter this, ZIFs are mixed with other materials like conducting polymers, other transitional metals composites, and activated carbons to prepare hybrid composites. Furthermore, the highly porous structure and large surface area of the ZIFs cage act as an ideal template for designing composites with excellent supercapacitor applications. This reviewis focus on the synthesis and electroc...
Inorganics
This work reports the facile, controlled, and low-cost synthesis of a nickel oxide and polyanilin... more This work reports the facile, controlled, and low-cost synthesis of a nickel oxide and polyaniline (PANI) nanocomposites-based electrode material for supercapacitor application. PANI-NiO nanocomposites with varying concentrations of NiO were synthesized via in-situ chemical oxidative polymerization of aniline. The XRD and FTIR support the interaction of PANI with NiO and the successful formation of the PANI-NiO-x nanocomposite. The SEM analysis showed that the NiO and PANI were mixed homogenously, in which the NiO nanomaterial was incorporated in porous PANI globular nanostructures. The multiple phases of the nanocomposite electrode material enhance the overall performance of the energy-storage behavior of the supercapacitor that was tested in 1 M H2SO4 using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Among the different nanocomposites, PANI-NiO-3 exhibit the specific capacitance of a 623 F g−1 at 1 A g−1 current ...
Nanomaterials
Zinc–air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-i... more Zinc–air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-ion batteries (LIBs), primarily due to their impressive energy density and low cost. However, the efficacy of zinc–air batteries is heavily dependent on electrocatalysts, which play a vital role in enhancing reaction efficiency and stability. This scholarly review article highlights the crucial significance of electrocatalysts in zinc–air batteries and explores the rationale behind employing Fe-Co-Ni-Zn-based metal–organic framework (MOF)-derived hybrid materials as potential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy, high catalytic activity, tunability, and structural stability. Various synthesis methods and characterization techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable for applications in ZABs. Fu...
International Journal of Energy Research
Recently, Zeolitic Imidazolate Frameworks (ZIFs) and their hybrid composites have incited a lot o... more Recently, Zeolitic Imidazolate Frameworks (ZIFs) and their hybrid composites have incited a lot of interest in the research community and have shown promising potential in supercapacitors owing to their excellent conductivity, high surface area, tunable structure, rich redox chemistry, composition diversity, etc. Even though many ZIFs are being studied for the advancement of electrode materials used for energy storage applications, in this review, we are focused on ZIF-8 and ZIF-67 only. The electrochemical performance of pure ZIFs is poor due to low electronic conductivity and poor cycling life. To counter this, ZIFs are mixed with other materials like conducting polymers, other transitional metals composites, and activated carbons to prepare hybrid composites. Furthermore, the highly porous structure and large surface area of the ZIFs cage act as an ideal template for designing composites with excellent supercapacitor applications. This reviewis focus on the synthesis and electroc...
Inorganics
This work reports the facile, controlled, and low-cost synthesis of a nickel oxide and polyanilin... more This work reports the facile, controlled, and low-cost synthesis of a nickel oxide and polyaniline (PANI) nanocomposites-based electrode material for supercapacitor application. PANI-NiO nanocomposites with varying concentrations of NiO were synthesized via in-situ chemical oxidative polymerization of aniline. The XRD and FTIR support the interaction of PANI with NiO and the successful formation of the PANI-NiO-x nanocomposite. The SEM analysis showed that the NiO and PANI were mixed homogenously, in which the NiO nanomaterial was incorporated in porous PANI globular nanostructures. The multiple phases of the nanocomposite electrode material enhance the overall performance of the energy-storage behavior of the supercapacitor that was tested in 1 M H2SO4 using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Among the different nanocomposites, PANI-NiO-3 exhibit the specific capacitance of a 623 F g−1 at 1 A g−1 current ...